WHAT IS OUT THERE BEYOND MANTLE CONVECTION?

David A. Yuen

Dept. of Geology and Geophysics
&
Minnesota Supercomputing Institute,
University of Minnesota, Minneapolis.
OUTLINE

(1.) INTRODUCTION

(2.) MANTLE CONVECTION

(3.) BEYOND MANTLE CONVECTION
 * wavelets (geoid, feature extraction)
 * discrete particle method (colloids, blood and porous media)
 * large-scale solution of Poisson equation and surfaces of crystals.

(4.) Closing Remarks
Collaborators

M.J.B Kido Japan
Alain Vincent Canada
Xavier Thibert Canada
Ludek Vecsey Czech Republic
Marc Monnereau France
Klaus Regenauer-Lieb Germany
Witek Dzwinkel Poland
Kris Boryszko Poland
Radek Matyska Czech Republic
Gordon Erlebacher Florida State University
Oleg Vasilyev Univ. Colorado, Boulder

Cathy Hier Majumder

Erik O.D. Sevre

Zack Garbow University of Minnesota
John M. Boggs
Lilli Yang

and others, such as other Russians (Yuri, Bobby, Sasha, Taras, Arkady)
Mantle Convection: layered versus whole mantle convection in the last 20 years this question has remained unanswered.
In fact the mantle may be a lot more complicated

Important issues:
1. subduction, slab detachment
2. stagnant slabs in the transition zone
3. superplumes, upper-mantle plumes, plumes from the mid-mantle
4. shear zones
5. metastable phase transitions, phase transitions and earthquakes
6. adiabaticity in the mantle, superadiabatic and equation of state
7. effects of thermal conductivity and its coupling to mantle rheology
8. volatiles, water on transport properties
Temperature

Composition

$3\text{He}/4\text{He}$. Min $= 1.8$, Max $= 35.0$

$207\text{Pb}/204\text{Pb}$. Min $= 13.9$, Max $= 17.5$

Reference Case, present time
Seven cases: five simple as a key to understand two complex.
Horizontal temperature profiles across the hottest structure for the seven cases.
Interacting Ductile Faults

The Model: Lithosphere in Pure Shear

v=const
Interacting Ductile Faults

Strain-rates Wet A

3 kyrs

6 kyrs

Strain-rates Wet B
Interacting Ductile Faults

40 krys

Wet A

Wet B

47 krys
Interacting Ductile Faults
Many things still left to do in mantle convection but the efforts would be far greater than before. There are also many new fields being developed, non-linear geophysics (NG branch of the AGU).

- Fractals, chaos,
- self-organized criticality (Bak)
- wavelets
- cellular automata
- discrete particle approach, molecular dynamics.

Data deluge \Rightarrow feature extraction

Data mining, clustering
Enormous amounts of data are being amassed in fields as diverse as genomics and geophysics.

It's sink or swim as a tidal wave of data approaches.

We must extract knowledge from such large stores of information "scientific visualization" or "DATA MINING".
Mother wavelet \(\psi\left(\frac{x-b}{a} \right) \)

\(x, \, b \) (multi-dimens.)

\(\vec{b} \) is position vector, \(a \) is scale

Multiple-scaled object to be examined

Wavelet transform picks up only the spatial distribution as a function of the moving \(\vec{b} \) with length scales of \(O(a) \).
Large-scale Solution of Poisson Equation

\[\nabla^2 \phi = \sigma (x, y) \]

- Potential (local properties)
- Charge density (topography from Atomic Force Microscope)

20,000 grid points
GOAL is to look at large surface area of 100 microns \times 100 microns

64 grid points for each atom

one million \times one million grid points

10^{12} points

need out-of-core Memory

around 1 Terabyte of Memory
visualization of Tera-scale Data
Closing Remarks

1. Many exciting things still left to be done in mantle convection, but has the field maxed out (every research specialty reaches a peak sometime.)

2. There are many exciting new things to do in the environmental sciences, provided one is willing to learn and to soak up new knowledge like a sponge.

3. A sound foundation in physics, chemistry and mathematics is needed to leap to other areas. that and hard work and curiosity.