University of Minnesota
University Relations

Minnesota Supercomputing Institute

Log out of MyMSI

Research Abstracts Online
January - December 2011

Main TOC ...... Next Abstract

University of Minnesota Twin Cities
College of Science and Engineering
Department of Mechanical Engineering

PI: Paul J. Strykowski

Modeling Countercurrent Shear in Practical Devices

These researchers are extending their previous MSI-supported work that looked into adding a counterblowing device to a backward facing step. The simulations to date modeled flow over a backward facing step using ANSYS CFX under isothermal conditions. At the sudden expansion a small device was added through which air was blown in opposition to the primary stream. The additional shear was sufficient to activate a global instability and dramatically alter the mixing of the well-established backward facing step. Backward facing step flow is a geometry used to model a RAM jet combustor and an active area of research by our group and others. The simulations and experiments to date have shown counterblowing to be a good candidate to increase burning rates. Experiments are underway to quantify the degree to which the blowing can improve combustion and provide benchmark data. The researchers are simulating the counterblowing backward facing step with combustion added. This work builds on existing computer simulations and continues to be two-dimensional and use both laminar and turbulence models. The researchers will initially use simple combustion models and add complexity as time and resources allow.

Group Member

Bo Yan, Undergraduate Student