Dr. Kelly Searle

PUBHL Epi & Comm Hlth
School of Public Health
Twin Cities
Project Title: 
Digital Technology for Storm-Related Malaria Response in Mozambique

Increases in frequency and severity of severe weather events (e.g. cyclones, tropical storms, and severe storms) are a hallmark of climate change and impact established programs to control and eliminate malaria. Mozambique is already experiencing these and currently does not have the capacity to respond to all of the infectious disease challenges that co-occur. Plasmodium falciparum malaria is endemic and the National Malaria Control Program (PNCM) is managing prevention, control, and elimination strategies throughout the country under varying environmental conditions. The progress of these programs is at risk when infrastructure is damaged due to severe storms because emergency response is usually limited to immediate risks and to highest impacted areas. Using digital technology, climate and malaria data can be integrated to identify all areas at risk of malaria infection and disease severity in the aftermath of these severe weather events.

Malaria case and severity data is routinely collected by the PNCM surveillance system systematically through the DHS and dhis2 systems. Rural health centers (RHCs) and hospitals report data to their respective District Health Office, which aggregates these data to report to the Provincial and National Health Offices. These researchers will collaborate with the PNCM to use these data to investigate spatial and temporal trends in weekly malaria case and severity data at the District level for all of Mozambique since the implementation of the surveillance system in 2016.

Climate and weather data are freely and publicly available with a 4-hour lag from NASA satellite imagery. While named storms fit a specific criterion and are well documented by landfall, their spatial and temporal extent is generally not estimated. Un-named storms are not well documented, but can be accounted for using satellite imagery.

The researchers will integrate malaria surveillance data and climate data to determine geographic and temporal areas of increased malaria risk following severe weather events. They will quantify these areas using a Baysian time-series model. This model will provide the basis of a software platform that will predict areas of high malaria risk for delivery of prevention and control measures following severe weather events.

The software platform will be developed using data already being collected by the PNCM for surveillance and will directly link information about environmental and infrastructural risk to public health programs. The long-term objective of this project is to provide an open source technology that can provide a rapid response for malaria and other infectious disease prevention and control programs following natural disasters. The project's specific aims are to:

  1. Create a time-series model that determines geographic areas of increased malaria risk due to being impacted by storms in Mozambique.
  2. Develop and pilot a user-friendly software platform that integrates malaria case and severity data and areas of storm impacts to predict geographic areas of high risk following severe weather events.
  3. Integrate the software platform with the national malaria control program in collaboration with the national disasters management institute.

This model and platform will be integrated into the Mozambique PCNM and INCG to directly inform the application of malaria prevention and control activities after severe weather events. As many countries also utilize the dhis2 surveillance platform and NASA climate data is freely available globally, this model and technology will be ultimately transportable to other countries experiencing similar impacts of climate change. The project will have direct impacts on the efficiency of malaria control and elimination programs in Mozambique and neighboring countries. The researchers will also provide an open source software platform that will impact other infectious disease prevention, control, and elimination programs that are dependent upon climate and weather events.

Project Investigators

Mitchel Croal
Euna Mehnaz Khan
Dr. Kelly Searle
Professor Jaideep Srivastava
Associate Professor Lin Zhang
Hengcheng Zhu
Are you a member of this group? Log in to see more information.