Project abstract for group siepmann

Development of Computational Tools and Their Application to Complex Chemical Systems

The Siepmann group develops a variety of computational chemistry tools including: Monte Carlo algorithms for efficient sampling of macromolecular conformations and spatial distributions in multi-component multi-phase systems; accurate and transferable force fields with multiple levels of resolution; and first principles simulation approaches. The Siepmann group applies these computational tools to investigate self-aggregation, phase behavior, and partitioning in polar and non-polar bulk fluids and in heterogeneous and interfacial systems. In particular, the group’s efforts are directed to investigating:

  • Chromatographic retention processes including various forms of liquid chromatography and size exclusion chromatography
  • The solvation mechanisms in liquid-liquid and supercritical extraction systems and in surfactant solutions
  • High-throughput screening of nanoporous materials for energy applications, (iv) the nucleation of atmospheric aerosols
  • Characteristics of organic chromophores in heterogeneous media
  • First principles simulations of reactive phase equilibria
  • Prediction of PVT properties of interest for enhanced oil and gas recovery


The researchers develop and mostly utilize their own software programs. Some applications use a parallelization hierarchy where large-scale distribution (for example, 16 independent trajectories at 4 different state points) of small, but long runs (4 to 8 cores for 24 hours) are employed, whereas first principles simulations can efficiently utilize 256 to 8,000 cores.

A bibliography of this group’s publications is attached.

Return to this PI's main page.