A workshop to honor the originators of the Car-Parrinello Method and to review major accomplishments and cutting-edge developments within the general area of molecular dynamical simulations was held March 18–19, 2000, at the University of Minnesota Supercomputing Institute for Digital Simulation and Advanced Computation.

The Car-Parrinello method, introduced in 1985 by Roberto Car (Princeton University) and Michele Parrinello (Max Planck Institute), has dramatically influenced electronic structure calculations for solids, liquids, and molecules, and initiated the field of quantum molecular dynamics among physicists. Molecular dynamics is a simulation method wherein the trajectories of individual atoms or molecules are integrated, usually using Newtonian dynamics. These simulations have provided us with great insights into the dynamical and structural properties of matter, such as the microstructure of the liquid state and the diffusion of impurities in crystals.

A key ingredient in this formulation is the description of interatomic forces. Prior to the invention of the Car-Parrinello algorithm, one typically constructed interatomic potentials either from experimental data or from other indirect theoretical methods. These

continued on the following page
classical methods often worked quite well for some systems (e.g., inert gases), but were not generally reliable for systems with complex bonds (e.g., covalent or partially covalent bonds where the interatomic potentials are inherently many-body ones).

The Car-Parrinello method deals directly with a quantum description of the electronic structure for the system of interest. In the Car-Parrinello algorithm, the electronic degrees of freedom are simultaneously evolved quantum mechanically along with the nuclear degrees of freedom, which are treated by a classical description. Within the Car-Parrinello algorithm the resulting interatomic interactions are fully quantum mechanical in nature—no ad hoc assumptions need be invoked.

The Car-Parrinello method has led to an explosive growth and interest in accurate modeling and simulating a wide variety of condensed matter systems. Applications of this approach can be performed on liquids (both metals and insulators), clusters, disordered solids, biological systems, defects, and surfaces. It has also led to the development of a number of related algorithms for handling large and complex systems.

Roberto Car and Michele Parrinello have both received a number of awards and recognition for their work; for example, the 1995 American Physical Society Aneesur Rahman Prize for Computational Physics was awarded to Car and Parrinello for the development of their algorithm. Aneesur Rahman, for whom the prize is named, was instrumental in the development of the molecular dynamics method. He performed the first realistic molecular dynamics computations and was a professor of physics at the University of Minnesota in the 1980s.

The Supercomputing Institute and IBM sponsored this meeting and it was endorsed by the American Physical Society. Over 80 distinguished scientists attended the workshop, including 24 from 11 countries outside the United States.
The meeting began with a plenary talk by Roberto Car. He spoke on using simulation methods for optimizing multivariable functions. This is a generic, fundamental problem in many fields. For instance, one might want to minimize a complex energy functional by varying a large number of parameters. These parameters might correspond to both electronic and nuclear degrees of freedom. Car outlined a new and novel approach using what he called quantum annealing.

In the following talks, Marvin Cohen (University of California at Berkeley) spoke about the contributions of pseudopotential theory to ab initio molecular dynamics. In particular, he noted that pseudopotential approach allowed one to focus only on the chemically active electrons and made it possible to compute accurate interatomic forces. This observation established the starting point for the Car-Parrinello algorithm. Giulia Galli (Lawrence Livermore National Laboratory) spoke about recent ab initio simulations of water under high pressure. This work extracted unexpected and complex microstructures present in a relatively simple liquid. Leonard Kleinman (University of Texas at Austin) followed this theme by outlining the properties of liquid metals such as sodium obtained using ab initio molecular dynamics. Michiel Sprik (Cambridge University) used a similar technique to examine reactions in aqueous solutions. The last speaker in the morning session was Paolo Carloni (International School for Advanced Studies, Trieste). He presented an overview on recent applications of the Car-Parrinello algorithm to understand complex biological molecules. A long-range application of this work would involve drug design and gene therapy.

In the afternoon session, Sokrates Pantelides (Vanderbilt University) discussed extensions of the Car-Parrinello method to excited state systems, applications which can be observed in the absorption of light and the propagation of electronic current through micromolecules, among other examples. Jerzy Bernholc (North Carolina State University) followed his talk, discussing simulations of nanotubes and their mechanical properties using molecular dynamics. Nanotubes are microscopic tubes of carbon that have novel electronic and structural properties. Chris Van de Walle (Xerox) gave an overview of defects and impurities in semiconductors such as gallium nitride. These systems are highly relevant for work within the electronics industry. Ursula Röthlisberger (ETH Zentrum, Switzerland) gave examples of Car-Parrinello simulations in the area of biochemistry, for example, the study of enzymatic reactions. Her talk also illustrated how one could combine molecular mechanical descriptions of these systems with quantum forces. J. Woods Halley (University of Minnesota) concluded the session by discussing water interacting

continued on page 4
Fifteen Years of Car-Parrinello
continued from page 3

with metal surfaces. This is an important system for electrochemical processes.

Michele Parrinello started the second day of the meeting with a plenary talk on spectroscopic properties of disordered and liquid systems using Car-Parrinello molecular dynamics. He addressed fundamental issues involved in predicting the low frequency response functions for amorphous semiconductors and water. The following talks focused on silica and related materials. Don R. Hamann (Lucent, Bell Labs) outlined a computational method based on adaptive coordinates for examining the electronic and structural properties of pure and doped silica. Peter Blöchl (IBM Zürich Research Laboratory, Switzerland) spoke on zeolites. Zeolites are complex silicates used for catalytic processing as seen in the petroleum industry. He illustrated the Car-Parrinello method by considering methanol and water in zeolitic systems. Alfredo Pasquarello (Institut Romand de Recherche Numerique en Physique des Matériaux, Switzerland) talked about the silicon-silica interface, which plays a crucial role in all electronic devices using silicon wafers.

The morning session ended with talks on materials of interest in earth science and geology, as well as the behavior of matter under extreme conditions. Renata Wentzcovitch (University of Minnesota) outlined how ab initio molecular dynamics can be used to predict the elasticity of materials as a function of pressure and temperature. Her work has direct relevance for describing the earth’s interior and constructing seismological models. (See article on p. 6.) Sandro Scandolo (International School for Advanced Studies) also considered simulations to describe the behavior of matter under pressure and temperature; however, his work focused on non-terrestrial systems such as the planet Neptune.

The afternoon session was comprised of four talks. Richard Martin (University of Illinois at Champaign-Urbana) presented the first, examining methods for improving the efficiency of the Car-Parrinello method to large systems. Most quantum calculations scale in time as some power of the number of atoms considered. For example, if there are N atoms in the system, the computational load might typically scale as N^3 for a quantum simulation, whereas a classical simulation would scale linearly with N. Martin’s work focused on developing algorithms for quantum systems that scale as classical systems. David Vanderbilt (Rutgers University) presented some simulations for surface dynamics. In particular, he illustrated how Al atoms move on the surface of the metal. Matthias Scheffler (Max Planck Institute) also examined surface diffusion for semiconductors such as GaAs and related growth methods for these systems. Wanda Andreoni (IBM Zürich Research Laboratory, Switzerland) presented the last talk of the meeting. She used Car-Parrinello simulations to examine the optical and electronic properties of complex inorganic and organic salts on metal surfaces such as gold.

Don R. Hamann (Lucent, Bell Labs) and Peter Blöchl (IBM Zürich Research Laboratory, Switzerland) compare their research during a break between presentations.
Text Mining Workshop

Text mining is a new interdisciplinary field. It is related to data mining, a relatively mature technology, typically applied to the analysis of data stored in structured databases. Text mining seeks to apply some of the same types of analysis, such as knowledge discovery, or trend analysis, to unstructured textual data that data mining applies to structured data. Text mining combines the disciplines of data mining, information extraction, information retrieval, text categorization, probabilistic modeling, linear algebra, machine learning, and computational linguistics to discover structure, patterns, and knowledge in large textual corpora.

Part of the “Hot Topics” Workshop Series presented by the Institute for Mathematics and its Applications (IMA), the workshop on Text Mining was organized by James Allan of the University of Massachusetts, Vipin Kumar of the Army High Performance Computing Research Center at the University of Minnesota, and Paul Thompson of the West Group. It was sponsored by the Army High Performance Computing Research Center, the Supercomputing Institute, and the West Group.

Advances in computational resources and new statistical algorithms for text analysis have helped text mining develop as a field. This two-day workshop brought together leading researchers in this new field, representing its various constituencies, including computer science, mathematics and statistics, information retrieval, and artificial intelligence. Within the text mining community, there is still no consensus when it comes to an exact definition for text mining. One of the purposes of this workshop was to help the community come closer to such a consensus. More generally, it provided an opportunity to share research among the diverse groups represented at the workshop.

Chris Wolff of the West Group started off the program by talking about Extensible Markup Language (XML) and the role it plays in the West Group. Other talks of the day included Dharmendra Modha of IBM Almaden, Daniel Boley of the University of Minnesota, Michael W. Berry of the University of Tennessee, Inderjit S. Dhillon of the University of Texas at Austin, George Karypis of the University of Minnesota, Marti Hearst of the University of California at Berkeley, Michael Steinbach of the University of Minnesota, Thomas Hoffman of Brown University, David Lewis of AT&T Labs, and Ralph Weischedel of BBN Technologies.

The second day started with a talk by Jaime Carbonell of Carnegie Mellon University. Carbonell spoke of prospecting for novelty in text mining and measures of novelty including maximal marginal relevance in multi-document summarization. Other speakers included Lucy T. Nowell of Battell/PNNL, Breck Baldwin of Baldwin Language Technologies, David Jensen of the University of Massachusetts–Amherst, Peter Jackson of the West Group, Henry Lieberman of MIT, and Eui-Hong (Sam) Han of the University of Minnesota.
The last decade has witnessed rapid progress in seismological observations of the three-dimensional structure of the Earth's mantle. The deep interior has been revealed to be approximately isotropic and radially symmetric, reflecting the dominant role of gravitational self-compression and depth-dependent variations in temperature and bulk composition. Deviations from the spherically averaged radial profile, though small, are significant because they are intimately linked to geodynamical processes. For example, the seismic anisotropy may be produced by the shear deformation associated with mantle flow, whereas the lateral heterogeneity presumably reflects lateral variations in temperature as well as in phase assemblage and bulk composition.

Seismological observations help address fundamental questions such as compositional stratification, geotherm, mantle dynamics, and the relation between deep mantle with surface plate tectonics, which ultimately bear on our understanding of the history and genesis of the earth itself. Such promise can only be fulfilled if there are advances of similar magnitude in understanding the physics of mantle minerals. A combination of seismology and mineral physics is often taken as a powerful probe of the deep interior. For instance, comparisons of elastic wave velocities of likely mineral assemblages with the seismic data help to ascertain which mineralogical model can best reproduce the seismic structure of the mantle and represent the composition of this region.

Towards providing a firm basis to relating the seismic features to geodynamical process and to the thermal and chemical state of the deep interior, Professor Renata Wentzcovitch (Chemical Engineering and Materials Science, and Supercomputing Institute Associate Fellow), and her post-doctoral associate and Supercomputing Institute Research

Figure 1: Temperature dependence of the coefficient of thermal expansion α of MgSiO$_3$ perovskite along isobars at 0, 25, 50, 100, and 150 GPa (solid lines from top to bottom). Experimental values of α [T_1–T_2] averaged over different temperature ranges are represented by circles at zero pressure, by diamonds in the 47 to 52 GPa range, and by triangles in the 88 to 94 GPa range.
Scholar, Dr. Bijaya Karki (Chemical Engineering and Materials Science), study important geophysical properties such as phase relations, thermal equations of state, elastic wave velocities of the major silicate and oxide phases of the mantle at the extreme pressure-temperature conditions (P to 136 GPa and T to 4000 K). They apply first-principles approaches within the framework of density functional theory. Their recent work focuses on temperature-dependent properties by calculating full phonon dispersions of minerals to include the thermal contribution of the crystal free energy within the quasi-harmonic approximation. These calculations offer crucial results of geophysical interest, including the thermal expansivity (Figure 1) and elastic moduli. The results show an excellent agreement with available experimental data in a limited range of pressures and temperatures.

Direct comparison between the predicted adiabatic bulk modulus of MgSiO$_3$ perovskite, thought to be the most abundant phase of the lower mantle, with the seismic radial profile provides enlightening information (Figure 2). It suggests that an adiabatic and homogeneous compositional model is incompatible with the lower mantle. A 100% perovskite model would require temperatures near or above the solidus, and thus, a pyroxene-type composition (perovskite + MgO) appears to be more appropriate. This is direct evidence for the composition of the lower mantle, which is of central importance to earth science. The results also indicate that the origin of the observed seismic lateral velocity heterogeneities can be attributed to a great extent to lateral variations of temperature. Investigation of the full elastic constant tensor in perovskite is now important to verify the elastic wave velocities and the anisotropy of this mineral. This research is performed in collaboration with Professor Shun-i Karato from the Department of Geology and Geophysics.
The partitioning of a solute molecule, a drug, or a pollutant between a polar aqueous environment and a non-polar organic environment—for example, a biological membrane or soil—is often the critical step in biological, environmental, and geological processes. The 1-octanol/water partition coefficient, K_{OW}, and the corresponding Gibbs free energy of transfer

$$\Delta G_{OW} = -RT \ln K_{OW}$$

for a given solute are therefore widely used in quantitative structure-activity relationships and have been used to correlate or predict a plethora of solute properties, including the pharmacokinetic characteristics of drug compounds in biophases (membranes, adipose tissue, and body fluids) and the toxicity and transport of pollutants in soil/groundwater systems. The 1-octanol molecule consists of a hydrophilic head and a lipophilic tail leading to a microheterogeneous solvent phase which has been found to mimic particularly well the complexities of biological membranes. It has been estimated that experimental K_{OW} are now available for more than 18,000 solutes, but this number is much less than the number of possible drug molecules or possible pollutants that can be synthesized.

Using computer resources provided by the Supercomputing Institute, graduate student Bin Chen and Associate Professor J. Ilja Siepmann (Department of Chemistry and Supercomputing Institute Fellow) have carried out Monte Carlo simulations to investigate the partitioning of normal alkane and primary alcohol solutes between water and (dry or wet) 1-octanol phases. These simulations make use of the MC3S (Monte Carlo for Complex Chemical Systems) molecular modeling package and of the TraPPE (Transferable Potentials for Phase Equilibria) force field which are both under development in the Siepmann research group. Configurational-bias Monte Carlo simulations in the Gibbs ensemble allow for the determination of ΔG_{OW} from the ratio of the solute number densities in the two coexisting phases. Comparison of the partitioning between a helium vapor phase and dry and wet 1-octanol established that water saturation has a much larger effect on the partitioning of polar solutes, than on alkane partitioning. Analysis of the structure of the wet 1-octanol phase (Figure 1) shows preferential partitioning of short alcohols (methanol and ethanol) into the water-rich regions of the solvent, whereas

Figure 1: Using the computing resources of the University of Minnesota Supercomputing Institute, graduate student Bin Chen and Professor J. Ilja Siepmann (Department of Chemistry and Supercomputing Institute Fellow) have carried out Monte Carlo simulations to investigate the partitioning of normal alkane and primary alcohol solutes between water and 1-octanol phases. These illustrations are snapshots of the dry (left) and water-saturated (right) 1-octanol phase. The gray, blue, red, and white spheres depict alkyl groups of solute molecules, oxygen atoms of 1-octanol, oxygen atoms of water or solute molecules, and hydrogen atoms, respectively. The alkyl tails of 1-octanol are omitted here for clarity.
1-butanol solutes are found preferentially at the boundary of hydrogen-bonded clusters.

Mixtures of alkanes and alcohols are of great importance for the petrochemical industries. However, the prediction of their phase behavior is difficult because hydrogen bonding can result in non-random mixing and a departure from ideal solution behavior. Graduate student John Stubbs has investigated the self-aggregation of 1-hexanol in n-hexane-rich binary solutions at ambient conditions (Figure 2). The 1-hexanol molecules prefer to self-assemble in clusters with 4 or 5 molecules consisting predominantly of cyclic structures, similar to those found in gas-phase water clusters. Approximately one in six 1-hexanol molecules is found as a free monomeric species, and the fraction of dimers is very low. The strong preference to form hydrogen-bonded clusters is also reflected in the unusually large first and second peaks in the oxygen-oxygen radial distribution functions (Figure 3).

In addition to the two research projects described above, other members of the Siepmann research group are working on many related problems. Supercomputing Institute Research Scholar Jeffrey Potoff is investigating mixtures of non-polar and quadrupolar molecules, such as the ternary phase diagram of propane/dinitrogen/carbon dioxide. Graduate student Collin Wick is studying the effects of interfacial adsorption on the retention characteristics of alcohols and alkylbenzenes in helium-squalane gas-liquid chromatography. Graduate student Ling Zhang explores the influence of semifluorinated hydrocarbons on the solubility of alkanes in perfluoroalkanes. This research receives support from the National Science Foundation, Divisions of Analytical and Surface Chemistry and of Chemical and Transport Systems.

Figure 2: Self-aggregation of 1-hexanol in a 5% solution in n-hexane. The gray, red, and white spheres depict the alkyl groups, oxygen and hydrogen atoms of 1-hexanol molecules. The n-hexane molecules are omitted for clarity.

Figure 3: Oxygen-oxygen radial distribution functions for dilute solutions of 1-hexanol in n-hexane.
The 2000 Midwest Thermodynamics and Statistical Mechanics Conference (May 14–16) brought together researchers in the areas of experimental, theoretical, and computational thermodynamics and statistical mechanics to exchange ideas and recent research results. The conference is designed in particular as a platform for young researchers (graduate students, postdoctoral researchers, and junior faculty members) to present and discuss their ideas and research accomplishments. Invited speakers also provide in-depth presentations of their research areas.

Sessions focused on phase equilibria, adsorption and transport, macromolecules and colloids, and biological systems. The invited speakers and the titles of their talks were:

- J. Richard Elliott, Jr., University of Akron, "The Discrete World of Discontinuous Potential Modeling"
- Christian M. Latoskie, Michigan State University, "Stochastic Modeling of Microbial Chemotaxis"
- Christopher M. Sorensen, Kansas State University, "Formation of Nanocrystal Superlattices from Colloidal Solutions"
- David L. Tomasko, Ohio State University, "Adsorption of Supercritical Carbon Dioxide on Microporous Materials"
- David T. Wu, Colorado School of Mines, "Gibbs Ensemble Monte Carlo for Solids"

In addition, there were 21 contributed talks, most of which were presented by graduate students or post-doctoral researchers.

Several of the invited and contributed talks presented experimental findings in adsorption, biochemistry, colloid science,
microbiology, polymer science, and supercritical fluid behavior.

The construction of intermolecular potentials remains a major research focus for several of the groups represented. Discussions of discrete, transferable, electrostatic, and mesoscopic potentials for gases, liquids, crystalline solids, and polymers wove their way through each of the sessions. As simulation techniques become ever more sophisticated, it appears that more accurate force fields are required as input. This will remain a challenge for the foreseeable future.

The conference was organized by Richard B. McClurg (Chemical Engineering and Materials Science) and J. Ilja Siepmann (Department of Chemistry and Supercomputing Institute Fellow), and it was sponsored by the Supercomputing Institute, IBM, and the National Science Foundation.
The University of Minnesota hosted this year’s International Symposium on Quantum Fluids and Solids on June 6–11. The event took place on the East Bank of the University of Minnesota campus in Minneapolis, and was sponsored by the International Union of Pure and Applied Physics, the National Aeronautics and Space Administration and the Jet Propulsion Laboratory, the Theoretical Physics Institute of the University of Minnesota, and the Supercomputing Institute. Additional support was provided by the Division of Materials Research of the National Science Foundation, and by the following University of Minnesota offices: the School of Physics and Astronomy, the Institute of Technology, the Office of the Vice President for Research, and the Office of the Senior Vice President and Provost. The co-organizers were Professors Charles E. Campbell and William Zimmermann, Jr., of the School of Physics and Astronomy.

The symposium represented the fifth such meeting held under the title since 1992; a number of other, similar symposia devoted to the same topics have been held over the past two decades. Organization of present and future symposia in this series is under the auspices of the Quantum Fluids and Solids Steering Committee; Campbell is an outgoing member and Zimmermann an incoming member of this committee.

The central topics of these symposia have traditionally been liquid and solid 3He and 4He, and their mixtures, but other topics, such as liquid and solid hydrogen and, most recently, the Bose-Einstein condensed phases of alkali atom and spin-aligned atomic hydrogen gases have been included in these meetings. These quantum fluids and solids are characterized by the presence of macroscopic quantum effects, including superfluidity, quantized vorticity, and the failure of most such systems to freeze even as a temperature of absolute zero is approached. The alkali atom systems and spin-aligned hydrogen are extremely low density, metastable gas phases, achieved by spin polarization in a large magnetic field followed by optical and magnetic trapping.
which have been observed to share the property of Bose-Einstein condensation. This property is widely believed to be the key feature that produces the exotic properties of superfluids.

More than 200 participants from around the world heard more than fifty oral presentations in plenary sessions and viewed approximately 140 poster presentations.

As in recent symposia, refereed proceedings will be published as an issue of the Journal of Low Temperature Physics. The symposium program was structured to include as broad a range of topics within the field as possible, including fundamental investigations and applications.

Theoretical and simulation research involving large-scale computation provided a strong component of the program. Much of this research is concerned with quantum fluids in confined and constrained geometries. Maria Carmen Gordillo (UPC Barcelona) described her recent simulations of quantum fluids adsorbed in carbon nanotubes. Srecko Kilic (University of Split, Croatia) described work on helium dimers and trimers in confined geometries. David Ceperley (University of Illinois, Champaign-Urbana) reported on path integral simulations of liquid helium droplets. Eckhard Krotscheck (Johannes Kepler University, Linz) discussed the theory of the dynamics of 4He in restricted geometries. Susana Hernandez (University of Buenos Aires) presented recent research on trapped fermions at very low densities, and Henry Glyde (University of Delaware) reported on simulations of Bose-Einstein condensation of trapped bosons. Allan Griffin (University of Toronto) provided an overview of the theoretical situation in the trapped boson systems and the relationship to superfluid 4He, including the theory of superfluid hydrodynamics in the former.

Several reports presented at the symposium were on recent research with cosmological implications. Yuri Bunkov (CNRS-Grenoble) presented his “Aurore de Venise” model, a cosmological scenario of the A-B phase transition in superfluid 3He. Peter McClintock (Lancaster University) discussed the question of why the Kibble mechanism seems not to work in liquid 4He. Grigory Volovik (Helsinki University of Technology) gave a wide ranging talk on “Vortices Observed and to be Observed.”

E. Dwight Adams (University of Florida), and Takao Mizusaki (Kyoto University) during a pause in the symposium.

Possibly the most stimulating presentation was given by Humphrey Maris (Brown University) under the title “Theoretical and Experimental Studies of Electron Bubbles in Liquid Helium.” This was the first public presentation of this controversial research. As described by The American Institute of Physics Bulletin of Physics News, Number 501, September 7, 2000, Maris proposes that “a split-up of electrons into two or more fragments would best explain decades of puzzling results in liquid helium experiments.” (Available online at http://www.aip.org/enews/physnews/2000/physnews.501.htm.) Maris’s report on this research may be found in the August 1, 2000 volume of the Journal of Low Temperature Physics.

The next International Symposium on Quantum Fluids and Solids will be held in July 2001 at the University of Konstanz, Germany (http://www.uni-konstanz.de/qfs2001/).
The 34th Midwest Theoretical Chemistry Conference (MTCC) is being held October 5–6, 2001, at the University of Minnesota in Minneapolis.

The following is a list of people who have made early commitments to present their work at the conference:

- Daniel M. Chipman, University of Notre Dame
- Christopher Cramer, University of Minnesota
- Larry A. Curtiss, Argonne National Laboratory
- Ernest Davidson, Indiana University
- Michael Davis, Argonne National Laboratory
- Janet Del Bene, Youngstown State University
- Jerry R. Dias, University of Missouri at Kansas City
- Clifford Dykstra, Indiana-Purdue University at Indianapolis
- Jiali Gao, University of Minnesota
- J. Daniel Gezelter, University of Notre Dame
- Rainer Glaser, University of Missouri at Columbia
- Joseph Golab, Amoco Corporation, Naperville, IL
- Mark Gordon, Iowa State University
- Stephen Gray, Argonne National Laboratory
- Christopher M. Hadad, Ohio State University
- Lawrence B. Harding, Chemistry Division, Argonne National Laboratory
- William Hase, Wayne State University
- Katharine Hunt, Michigan State University
- Jan Jensen, University of Iowa
- Steven R. Kass, University of Minnesota
- Nancy Makri, University of Illinois at Urbana-Champaign
- Todd Martinez, University of Illinois at Urbana-Champaign
- Glenn Martyna, Indiana University
- Anne McCoy, Ohio State University
- Piotr Piecuch, Michigan State University
- Mark Ratner, Northwestern University
- George Schatz, Northwestern University
- H. Bernhard Schlegel, Wayne State University
- J. Ilja Siepmann, University of Minnesota
- James Skinner, University of Wisconsin
- Donald G. Truhlar, University of Minnesota
- Peter Wolynes, University of California at San Diego
- Arun Yethiraj, University of Wisconsin at Madison
- Darrin York, University of Minnesota

This event is being sponsored by the Supercomputing Institute for Digital Simulation and Advanced Computation, IBM, and SGI.

Additional conference information will be provided as conference planning progresses. For more information, visit the MTCC’s Internet site: http://www.msi.umn.edu/general/Symposia/MTCC/ or contact the conference administration:

Mr. Michael Olesen
MTCC Conference Administrator
University of Minnesota
Supercomputing Institute
1200 Washington Ave. S.
Minneapolis, MN 55415
phone: (612) 624-1336
fax: (612) 624-8861
email: olesen@msi.umn.edu

Pre-registration is required to attend this conference.
Antonio Lamura, right, of the Institute for Solid State Research, Forschungszentrum Jülich, Germany, visited the Supercomputing Institute for three weeks in June to collaborate with Daniel M. Kroll (left) of the Department of Medicinal Chemistry and his research associate Thomas Ihle. While here, Dr. Lamura utilized a new particle-based mesoscopic simulation technique being developed by Dr. Kroll to study Poiseuille flow and vortex shedding around a square object in a planar channel.

Mesoscopic simulation techniques such as the lattice-Boltzmann method, lattice-gas cellular automata, dissipative particle dynamics, and the new particle-based method being developed at Minnesota have recently attracted a great deal of interest because their coarse-grained nature and comcomitant efficient treatment of the hydrodynamic degrees of freedom make them ideally suited for studies of complex fluids—with their widely differing length and time scales—as well as flow and dispersion in complex geometries. The work started by Dr. Lamura during this visit is the first step in a longer collaboration which will utilize and further develop this simulation technique to study colloids and polymeric degrees of freedom in solvent.

Maria Luz Sánchez, far right, and José Corchado, center (standing), visited the Supercomputing Institute in July and August; pictured with them are graduate student Paul Winget, far left, and Patton Fast of Supercomputing Institute User Support (seated). Drs. Sánchez and Corchado—visiting researchers from the Department of Chemistry at the University of Extremadura in Badajoz, Spain—carried out a semiclassical simulation of the oxidation of methylamine to formaldehyde and ammonia by methylamine dehydrogenase in collaboration with Cristobal Alhambra, Jordi Villa, Jiali Gao, and Donald G. Truhlar. The multidimensional dynamics calculations for this project were carried out using the CHARMMRATE module of CHARMM as developed by the collaborators.
Aerospace Engineering and Mechanics

- 2000/52, April 2000
 Fluidization of 1204 Spheres: Simulation and Experiment
 T. W. Pan, **D. D. Joseph**, R. Bai, R. Glowinski, and V. Sarin

- 2000/68, April 2000
 A Fictitious Domain Approach to the Direct Numerical Simulation of Uncompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow

- 2000/90, May, 2000
 Sedimentation of a Sphere Near a Vertical Wall in an Oldroyd-B Fluid
 P. Singh and **D. D. Joseph**

- 2000/91, May 2000
 A Note on the Lift-Off of a Single Particle in Viscoelastic Fluids
 T. Ko, N. A. Patankar, and **D. D. Joseph**

- 2000/111R, June 2000
 Multispectral Shock-Layer Radiance From a Hypersonic Slender Body
 D. A. Levin, **G. V. Candler**, and C. C. Limbaugh

- 2000/112R, June 2000
 Multi-Block Large-Eddy Simulations of Turbulent Boundary Layers
 A. Pascarelli, U. Piomelli, and **G. V. Candler**

Astronomy

- 2000/135R July 2000
 Detailed Simulation of Nitrogen Dissociation Over a Sphere
 C. H. Campbell and **G. V. Candler**

 Experiments and Simulations of DC and Pulsed Discharges in Air Plasmas

- 2000/67, April 2000
 The Propagation of Magneto-Centrifugally Launched Jets: I
 A. Frank., T. Lery, T. A. Gardiner, **T. W. Jones**, and D. Ryu

- 2000/138, July 2000
 Properties of Cosmic Shock Waves in Large Scale Structure Formation
 F. Miniati, D. Ryu, H. Kang, **T. W. Jones**, R. Cen, and J. P. Ostriker

- 2000/139, July 2000
 3-D MHD Numerical Simulations of Cloud-Wind Interactions
 G. Gregori, F. Miniati, D. Ryu, and **T. W. Jones**

- 2000/171, October 2000
 The Magnetohydrodynamic Kelfin-Helmholtz Instability: A Three-Dimensional Study of Nonlinear Evolution
 D. Ryu, **T. W. Jones**, and A. Frank

Names of University of Minnesota principal investigators appear in bold type.
Biochemistry, Molecular Biology, and Biophysics

• 2000/98R, June 2000
 The 1.8 Å Crystal Structure of Catechol 1,2-Dioxygenase Reveals a Novel Hydrophobic Helical Zipper as a Subunit Linker
 M. W. Vetting and D. H. Ohlendorf

• 2000/109, June 2000
 Depolymerization of Phospholamban in the Presence of Calcium Pump: A Fluorescence Energy Transfer Study
 L. G. Reddy, L. R. Jones, and D. D. Thomas

• 2000/127R, June 2000
 Liver Fatty Acid Binding Protein: Species Variation and the Accommodation of Different Ligands
 J. Thompson, A. Reese-Wagoner, and L. Banaszak

• 2000/128R, June 2000
 Structural Properties of the Adipocyte Lipid Binding Protein
 A. Reese-Wagoner, J. Thompson, and L. Banaszak

• 2000/129R, June 2000
 Properties and Crystal Structure of a β-Barrel Folding Mutant
 I. J. Ropson, B. C. Yowler, P. M. Dalessio, L. Banaszak, and J. Thompson

Chemical Engineering and Materials Science

• 2000/37, March 2000
 The Pseudopotential-Density Functional Method (PDFM) Applied to Nanostructures
 J. R. Chelikowsky

• 2000/45, March 2000
 Suppressing Convection in Bridgman Crystal Growth: Effects of Microgravity, Magnetic Fields, and Crucible Rotation
 A. Yeckel and J. J. Derby

• 2000/113, June 2000
 Density-Functional-Theory Modeling of Cyclohexane Partial Oxidation in Millisecond Single-Gauze Reactors
 R. P. O’Connor and L. D. Schmidt

• 2000/117, June 2000
 Transient Polymeric Drop Extension and Retraction in Uniaxial Extensional Flows
 R. W. Hooper, V. F. de Almeida, C. W. Macosko, and J. J. Derby

• 2000/156R, August 2000
 Pore-Scale Simulation of Dispersion
 R. S. Maier, D. M. Kroll, R. S. Bernard, S. E. Howington, J. F. Peters, and H. T. Davis

—Chemical Engineering and Materials Science continued on next page

Names of University of Minnesota principal investigators appear in bold type.
• 2000/158R, September 2000
 Evidence of a Reentrant Peierls Distortion in Liquid GeTe
 J. Y. Raty, V. Godlevsky, P. Ghosez, C. Bichara, J. P. Gaspard, and
 J. R. Chelikowsky

• 2000/159R, September 2000
 Spectroscopic Evidence for the Tricapped Trigonal Prism Structure of Semiconductor Clusters
 J. Müller, B. Liu, A. A. Shvartsburg, S. Ogut, **J. R. Chelikowsky**, K. W. M. Siu, K.-M. Ho, and
 G. Gantefor

• 2000/169, October 2000
 Three-Dimensional Computations of Transport and Growth for Crystal Growth Systems
 J. J. Derby, Y.-I. Kwon, J. C. Rojo, B. Vartak, and A. Veckel

• 2000/170, October 2000
 Buoyant and Rotational Flows During ACRT Vertical Bridgman Crystal Growth
 J. J. Derby, and A. Veckel

• 2000/186, October 2000
 Viscoelasticity of Dilute Solutions of Semiflexible Polymers
 M. Pasquali, V. Shankar, and **D. C. Morse**

Chemistry

• 2000/27, January 2000
 Extrapolation and Perturbation Schemes for Accelerating the Convergence of Quantum Mechanical Free Energy Calculations Via the Fourier Path-Integral Monte Carlo Method
 S. L. Mielke, J. Srinivasan, and **D. G. Truhlar**

• 2000/40R, March 2000
 Resonance Raman Spectroscopy as a Probe of the Bis(µ-oxo)dicopper Core
 S. Fukuzumi, **L. Que Jr.**, and W. B. Tolman

• 2000/41R, March 2000
 Quantum Chemical Characterization of Cycloaddition Reactions Between 1,3-Butadiene and Oxyallyl Cations of Varying Electrophilicity
 C. J. Cramer and S. E. Barrows

• 2000/42R, March 2000
 Sugar Anomerism—A Short and Sweet Digression: Perspective On 'The Application of Ab Initio Molecular Orbital Theory to the Anomeric Effect,' Jeffrey GA, Pople JA,
 Radom L (1972) Carbohydr Res 25:117
 C. J. Cramer

Names of University of Minnesota principal investigators appear in bold type.
• 2000/43R, March 2000
 Computational Electrochemistry: Aqueous
 One-Electron Oxidation Potentials for
 Substituted Anilines
 P. Winget, E. J. Weber, C. J. Cramer, and
 D. G. Truhlar

• 2000/46, March 2000
 Self-Adapting Fixed-Endpoint
 Configurational-Bias Monte Carlo Method
 for the Regrowth of Interior Segments of
 Chain Molecules with Strong Intramolecular
 Interactions
 C. D. Wick and J. I. Siepmann

• 2000/47, March 2000
 Transferable Potentials for Phase Equilibria,
 4. United-Atom Description of Linear and
 Branched Alkenes and Alkylbenzenes
 C. D. Wick, M. G. Martin, and
 J. I. Siepmann

• 2000/48R, March 2000
 Benzo[4,5]cyclobutene: The Impact of Fusing a
 Strained Ring Onto Benzene
 Z. Glasovac, M. Eckert-Maksic,
 K. M. Broadus, M. C. Hare, and
 S. R. Kass

• 2000/53, April 2000
 Partitioning of Alkane and Alcohol Solutes
 Between Water and (Dry or Wet) 1-Octanol
 B. Chen and J. I. Siepmann

• 2000/74, May 2000
 MC-QCISD: Multi-Coefficient Correlation
 Method Based on Quadratic Configuration
 Interaction with Single and Double
 Excitations
 P. L. Fast and D. G. Truhlar

• 2000/79, May 2000
 Adiabatic Connection for Kinetics
 B. J. Lynch, P. L. Fast, M. Harris, and
 D. G. Truhlar

• 2000/80, May 2000
 Continuous Surface Switching: An Improved
 Time-Dependent Self-Consistent-Field
 Method for Nonadiabatic Dynamics
 Y. L. Volobuev, M. D. Hack, M. S. Topaler,
 and D. G. Truhlar

• 2000/82, May 2000
 Monte Carlo Calculations for the Phase
 Equilibria of Alkanes, Alcohols, Water, and
 Their Mixtures
 J. M. Stubbs, B. Chen, J. J. Potoff, and
 J. I. Siepmann

• 2000/83, May 2000
 Simulating Retention in Gas-Liquid
 Chromatography: Benzene, Toluene, and
 Xylene Solutes
 C. D. Wick, M. G. Martin,
 J. I. Siepmann, and M. R. Shure

—Chemistry continued
on next page
2000/89, May 2000
Electronic Structure Properties of Solvated Biomolecules: A Quantum Approach for Macromolecular Characterization
J. Khandogin, A. Hu, and D. M. York

2000/95, June 2000
A Novel Monte Carlo Algorithm for Simulating Strongly Associating Fluids: Applications to Water, Hydrogen Fluoride, and Acetic Acid
B. Chen and J. I. Siepmann

2000/97, June 2000
Effect of Branching on the Fluid Phase Behavior of Alkane Monolayers
J. J. Potoff and J. I. Siepmann

2000/119, June 2000
Synthesis and Reactivity of Trans-Tricyclo[4.2.0.0^1,3]oct-4-ene
E. S. Koltun and S. R. Kass

2000/125R, June 2000
Potential Energy Surface, Thermal and State-Selected Rate Coefficients and Kinetic Isotope Effects for Cl+CH^4 → HCl+CH^3
J. C. Corchado, D. G. Truhlar, and J. Espinosa-Garcia

2000/137R, July 2000
Thermochemical Analysis of Core Correlation and Scalar Relativistic Effects on Molecular Atomization Energies
J. M. L. Martin, A. Sundermann, P. L. Fast, and D. G. Truhlar

2000/147, August 2000
Ab Initio QM/MM Simulations with a Molecular Orbital-Valence Bond (MOVB) Method: Application to an S_N2 Reaction in Water
Y. Mo and J. Gao

2000/149, August 2000
Simulation of Chemical Reactions in Solution Using an Ab Initio Molecular Orbital-Valence Bond Model
J. Gao and Y. Mo

2000/150, August 2000
An Ab Initio QM/MM Simulation Study of Solvent Effects on the Relative Acidity of E- and Z. Esters in Aqueous Solution
K. Byun and J. Gao

2000/161R, September 2000
Photodetachment of the first Zwitterionic Anions in the Gas Phase: Probing Intramolecular Coulomb Repulsion and Attraction

2000/162, September 2000
Rearrangement of the Trans-Tricyclo[4.2.0.0^1,3]oct-4-ynyl Skeleton
E. S. Koltun and S. R. Kass

2000/168R, October 2000
Structural Change at the Onset of Microsolvation: Rotational Spectroscopy of HCN···HCN···SO^3
D. L. Fiacco, S. W. Hunt, and K. R. Leopold

Names of University of Minnesota principal investigators appear in bold type.
Civil Engineering

- 2000/8, February 2000
 Patterns and Organization in Precipitation
 E. Foufoula-Georgiou and V. Vuruputur

- 2000/51, April 2000
 Seismic Detailing of Continuity Plates and Web Doubler Plates in Steel Moment-Resisting Connections
 S. C. Cotton, S. D. Prochnow, Y. Ye, J. F. Hajjar, and R. J. Dexter

- 2000/103, June 2000
 Dynamic Response of a Padded Annular Footing on a Uniform Elastic Half-Space
 B. B. Guzina and S. F. Ninchcheu

- 2000/104, June 2000
 Dynamic Soil Sensing Via Horizontally-Polarized Shear Waves
 B. B. Guzina

- 2000/124, June 2000
 Propagation and Fracture Behavior of Large Cracks in Redundant Structures
 R. J. Dexter and P. J. Pilarski

- 2000/126, June 2000
 Reassessment of Design Criteria and New Alternatives for column Transverse Stiffeners (Continuity Plates) and Web Doubler Plates: Interim Report

- 2000/163, September 2000
 Impact of Small-Scale Precipitation Variability on Larger-Scale Spatial Organization of Land-Atmosphere Fluxes
 D. K. Nykanen, E. Foufoula-Georgiou, and W. M. Lapenta

- 2000/164, September 2000
 Soil Moisture Variability and its Effect on Scale-Dependency of Nonlinear Parameterizations in Coupled Land-Atmosphere Models
 D. K. Nykanen and E. Foufoula-Georgiou

- 2000/175, October 2000
 Multi-Scale Statistical Properties of a High-Resolution Precipitation Forecast
 D. Harris, E. Foufoula-Georgiou, K. K. Droegemeier, and J. J. Levit

- 2000/176, October 2000
 Scale Invariances in the Morphology and Evolution of Braided Rivers
 E. Foufoula-Georgiou and V. Sapoznikov

- 2000/176, October 2000
 Scale Issues in Verification of Precipitation Forecasts
 B. Tustison, D. Harris, and E. Foufoula-Georgiou

- 2000/183, October 2000
 Instability of Partial Cavitation: A Numerical/Experimental Approach
 R. E. A. Arndt, C. C. S. Song, M. Kjeldsen, J. He, and A. Keller

Names of University of Minnesota principal investigators appear in bold type.
• 2000/182R, October 2000
 Theory and Application of CFD to Industrial Flows
 C. C. S. Song

• 2000/184, October 2000
 Simulation of Pressure Fluctuations in Pump-Turbines Induced by Runner-Guide Vane Interactions
 X. Chen, C. C. S. Song, K. Tani, Shinmei, K. Niikura, and J. Sato

• 2000/192, October 2000
 Post-Failure Micromechanisms in Shear Banding of Rock
 J. F. Labuz and F. C. S. Carvalho

Computer Science, Electrical Engineering, and Computer Engineering

• 2000/30, February 2000
 A Comprehensive Dynamic Processor Allocation Scheme for Multiprogrammed Multiprocessor Systems
 I. H. Kazi and D. J. Lilja

• 2000/38, March 2000
 Graph Partitioning for High Performance Scientific Simulations
 K. Schloegel, G. Karypis, and V. Kumar

• 2000/39, March 2000
 LU’s and Factorized Approximate Inverses are Strongly Related. Part I: Overview of Results
 M. Bollhöfer and Y. Saad

• 2000/54R, April 2000
 Information Power Grid: The New Frontier in Parallel Computing
 W. Leinberger and V. Kumar

• 2000/55, April 2000
 A Performance Study of Diffusive vs. Remapped Load-Balancing Schemes
 K. Schloegel, G. Karypis, V. Kumar, R. Biswas, and L. Oliker

• 2000/56, April 2000
 A New Algorithm for Multi-Objective Graph Partitioning
 K. Schloegel, G. Karypis, and V. Kumar

• 2000/57, April 2000
 Gang Scheduling for Distributed Memory Systems
 W. Leinberger, G. Karypis, and V. Kumar

• 2000/58, April 2000
 Centroid-Based Document Classification: Analysis and Experimental Results
 E.-H. Han and G. Karypis

• 2000/59, April 2000
 Concept Indexing—A Fast Dimensionality Reduction Algorithm with Applications to Document Retrieval and Categorization
 G. Karypis and E.-H. Han

• 2000/60, April 2000
 Efficient Parallel Algorithms for Mining Associations
 M.V. Joshi, E.-H. Han, G. Karypis, and V. Kumar

Names of University of Minnesota principal investigators appear in bold type.
• 2000/61, April 2000
 Job Scheduling in the Presence of Multiple Resource Requirements
 W. Leinberger, G. Karypis, and V. Kumar

• 2000/62, April 2000
 Load Balancing Across Near-Homogeneous Multi-Resource Servers
 W. Leinberger, G. Karypis, V. Kumar, and R. Biswas

• 2000/63, April 2000
 Multi-Capacity Bin Packing Algorithms with Applications to Job Scheduling under Multiple Constraints
 W. Leinberger, G. Karypis, and V. Kumar

• 2000/64, April 2000
 Parallel Multilevel Algorithms for Multi-Constraint Graph Partitioning
 K. Schloegel, G. Karypis, and V. Kumar

• 2000/65, April 2000
 PSPASES: An Efficient and Scalable Parallel Sparse Direct Solver
 M. Joshi, G. Karypis, V. Kumar, A. Gupta, and F. Gustavson

• 2000/66, April 2000
 Parallel Algorithms for Mining Sequential Associations: Issues and Challenges
 M. V. Joshi, G. Karypis, and V. Kumar

• 2000/70, April 2000
 ILUs and Factorized Approximate Inverses are Strongly Related. Part II: Applications to Stabilization
 M. Bollhöfer and Y. Saad

• 2000/73, May 2000
 Compiler-Assisted Sub-Block Reuse
 J. Huang and D. J. Lilja

• 2000/75, May 2000
 Toward Complexity-Effective Verification: A Case Study of the Cray SV2 Cache Coherence Protocol
 D. Abts, D. J. Lilja, and S. Scott

• 2000/105, June 2000
 JavaSpMT: A Speculative Thread Pipelining Parallelization Model for Java Programs
 I. H. Kazi and D. J. Lilja

• 2000/106, June 2000
 The Superthreaded Processor Architecture
 J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew

• 2000/133, July 2000
 When All Else Fails, Guess: The Use of Speculative Multithreading for High-Performance Computing
 D. J. Lilja

• 2000/140, July 2000
 Compiler-Directed Static Classification of Value Locality Behavior
 Q. Zhao and D. J. Lilja

—Computer Science, Electrical Engineering, and Computer Engineering continued on next page
• 2000/141, July 2000

 A Language-Theoretic Approach to Specifying and Verifying Multiprocessor Cache Coherence Protocols

 D. Abts, D. J. Lilja, and S. Scott

• 2000/145, August 2000

 Exploring Sub-Block Value Reuse for Superscalar Processors

 J. Huang and D. J. Lilja

• 2000/153, August 2000

 Micromagnetic Predictions for Thermally Assisted Reversal Over Long Time Scales

 J. Xue and R. H. Victora

• 2000/165, September 2000

 Enhanced GMRES Acceleration Techniques for Some CFD Problems

 A. Soulaimani, N. Ben Salah, and Y. Saad

• 2000/166, September 2000

 Wave Formation in an Inclosed Semifinite Duct

 G. Bar-Meir

• 2000/185, October 2000

 Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification

 E. Han, G. Karypis, and V. Kumar

• 2000/189, October 2000

 Multilevel Refinement for Hierarchical Clustering

 G. Karypis, E.-H. Han, and V. Kumar

• 2000/190, October 2000

 A Unified Algorithm for Load-Balancing Adaptive Scientific Simulations

 K. Schloegel, G. Karypis, and V. Kumar

Economics

• 2000/96, June 2000

 Does Competition Increase Patient Mortality? Hospital Quality and Competition

 G. Gowrisankaran and R. Town

Epidemiology

• 2000/187, October 2000

 Linkage of Blood Pressure to D21S1440 in Mexican Americans

 L. D. Atwood, P. B. Samollow, J. E. Hixson, M. P. Stern, and J. W. MacCluer

• 2000/188, October 2000

 Genome-Wide Linkage Analysis of Blood Pressure in Mexican Americans

 L. D. Atwood, P. B. Samollow, J. E. Hixson, M. P. Stern, and J. W. MacCluer

Names of University of Minnesota principal investigators appear in bold type.
<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000/88, May 2000</td>
<td>A Two-Level, Discrete Particle Approach for Large-Scale Simulation of Colloidal Aggregates</td>
<td>W. Dzwinel and D. A. Yuen</td>
</tr>
<tr>
<td>2000/93, May 2000</td>
<td>On the Possibility of a Second Kind of Mantle Plumes</td>
<td>L. Cserepes and D. A. Yuen</td>
</tr>
<tr>
<td>2000/121, June 2000</td>
<td>Detection of Plate Boundaries from Geoid Data</td>
<td>L. Vecsey, A. P. Vincent, and D. A. Yuen</td>
</tr>
<tr>
<td>2000/122, June 2000</td>
<td>The Effects of Variable Thermal Conductivity on Mantle Heat-Transfer</td>
<td>A. P. van den Berg, V. Steinbach, and D. A. Yuen</td>
</tr>
<tr>
<td>2000/142, July 2000</td>
<td>Mixing and Droplets Coalescence in Immiscible Fluid. 3-D Dissipative Particle Dynamics Model</td>
<td>K. Boryczko, W. Dzwinel, and D. A. Yuen</td>
</tr>
</tbody>
</table>

Names of University of Minnesota principal investigators appear in bold type.
• 2000/152, August 2000
 Better Mixing in Newtonian Convection
 Versus Greater Complexity in Non-Newtonian Mixing
 A. A. Ten, Y. Y. Podladchikov, and
 D. A. Yuen

• 2000/154, August 2000
 Temperature-Dependent Viscous Gravity
 Currents with Shear Heating
 O. V. Vasilyev, A. A. Ten, and D. A. Yuen

• 2000/157, August 2000
 Secondary Upwelling Instabilities Developed
 in High Rayleigh Number Convection:
 Possible Applications to Hot Spots
 M. S. Murphy, L. Vacsey, E. O. Sevre, and
 D. A. Yuen

• 2000/160, September 2000
 The Problem of Viscoelastic Relaxation of the
 Earth Solved by a Matrix Eigenvalue
 Approach Based on Discretization in Grid
 Space
 L. Hanyk, C. Matyska, and D. A. Yuen

• 2000/167, October 2000
 Large-Scale Simulations of Colloidal
 Dynamics with Fluid Particle Model (FPM)
 and Dissipative Particle Dynamics (DPD)
 W. Dzwinel and D. A. Yuen

• 2000/181, October 2000
 Are Mantle Plumes Adiabatic?
 C. Matyska and D. A. Yuen

Names of University of Minnesota principal investigators appear in bold type.
Mathematics

• 2000/34, March 2000
 Post-Processing of Galerkin Methods for Hyperbolic Problems
 C. Cockburn, M. Luskin, C. W. Shu, and E. Suli

• 2000/35, March 2000
 Stability of Microstructure for Tetragonal to Monoclinic Martensitic Transformations
 P. Belik and M. Luskin

• 2000/36, March 2000
 On the Stability of Microstructure for General Martensitic Transformations
 M. Luskin

• 2000/71, April 2000
 Superconversion of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids
 B. Cockburn, G. Kanschat, I. Perugia, and D. Schötzau

• 2000/72, April 2000
 An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems
 P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau

• 2000/76, May 2000
 Modelling Pinchoff and Reconnection in a Hele-Shaw Cell I: The Models and Their Calibration
 H. G. Lee, J. S. Lowengrub, and J. Goodman

• 2000/77, May 2000
 Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials
 T. Y. Hou, J. S. Lowengrub, and M. J. Shelley

• 2000/78, May 2000
 Modelling Pinchoff and Reconnection in a Hele-Shaw Cell II: Analysis and Simulation in the Nonlinear Regime
 J. Goodman, H. G. Lee, and J. S. Lowengrub

Mechanical Engineering

• 2000/107, June 2000
 An Asymmetrical, 3-D Model for Fibrous Filters
 S. Dhaniyala and B. Y. H. Liu

• 2000/108, June 2000
 Measurements and Modelling of Megasonic Cleaning
 D. B. Kittelson, R. Gouk, T. H. Kuehn, and Y. Wu

• 200/134, July 2000
 Bypass Effect in High Performance Heat Sinks
 A. Bar-Cohen, M. Iyengar, and S. Prstic

• 2000/151, August 2000
 Numerical Prediction of the Flow Field Near the Tip of a Rotating Turbine Blade
 R. J. Goldstein, B. Han, S. Han, and P. Jin

—Mechanical Engineering
continued on next page
• 2000/134, July 2000
Bypass Effect in High Performance Heat Sinks
A. Bar-Cohen, M. Iyengar, and S. Prstic

• 2000/151, August 2000
Numerical Prediction of the Flow Field Near the Tip of a Rotating Turbine Blade
R. J. Goldstein, B. Han, S. Han, and P. Jin

• 2000/204R, October 2000
Particle Transport at Low Pressure: Particle Deposition in a Tube with an Abrupt Contraction

• 2000/132R, June 2000
Statistical Mechanics of Membranes: Freezing, Undulations, and Topology Fluctuations
G. Gompper and D. M. Kroll

• 2000/156R, August 2000
Pore-Scale Simulation of Dispersion
R. S. Maier, D. M. Kroll, R. S. Bernard, S. E. Howington, J. F. Peters, and H. T. Davis

Orthopaedic Biomedicine

• 2000/110, June 2000
Load Improves Anchorage for Stable Hydroxyapatite But Not Titanium Implants
O. Mouzin, J. Bechtold, and K. Søballe

Medical Chemistry

• 2000/28, February 2000
Competition Between Kinetic and Surface Tension Anisotropy in Dendritic Growth
T. Ihle

• 2000/29, February 2000
Thermal Lattice-Boltzmann Method for Non-Ideal Gases with Potential Energy
T. Ihle and D. M. Kroll

• 2000/32R, March 2000
Molecular Docking Reveals a Novel Binding Site Model for Fentanyl at the µ-Opioid Receptor
G. Subramanian, M. G. Paterlini, P. S. Portoghese, and D. M. Ferguson

• 2000/5, February 2000
Metastable Domain Patterns Studied Using Monte Carlo Simulations
A. B. Kunz and C. E. Campbell

• 2000/6, February 2000
Temperature Dependent Simulations of Hysteresis in Thin Permalloy Films
A. B. Kunz and C. E. Campbell

Names of University of Minnesota principal investigators appear in bold type.
• 2000/31, February 2000
Pauli-Villars Regularization and Discrete
Light-Cone Quantization in Yukawa Theory
J. R. Hiller

• 2000/84R, May 2000
Simulation of Battery Components and
Interfaces on the Atomic Scale: Examples of
What We Can Learn
J. W. Halley and Y. Duan

• 2000/85, May 2000
Simulation Methods for Chemically Specific
Modeling of Electrochemical Interfaces
J. W. Halley, P. Schelling, and Y. Duan

• 2000/86, May 2000
Identical Particle Scattering From a Weakly
Coupled Bose Condensed Gas
A. Wynveen, A. Setty, A. Howard,
J. W. Halley, and C. E. Campbell

• 2000/99, June 2000
Self Consistent Tight Binding Molecular
Dynamics for Realistic Simulation of Oxide
Behavior
J. W. Halley, P. K. Schelling, and
M. Zhuang

• 2000/100, June 2000
Gas Dynamics of Pulsed Low Energy Helium
Beams
K. Lidke, M. Williams, A. Wynveen, and
J. W. Halley

• 2000/101, June 2000
Chemical Physics of the Electrode-Electrolyte
Interface
J. W. Halley, S. Walbran, and D. L. Price

• 2000/102, June 2000
Modeling of Semiconductor-Electrolyte
Interfaces with Tight-Binding Molecular
Dynamics
P. K. Schelling and J. W. Halley

• 2000/118, June 2000
MHD Simulation of Magnetospheric
Waveguide Modes
K. A. Keller and R. L. Lysak

• 2000/120, June 2000
Studies of Ion Solitary Waves Using
Simulations Including Hydrogen and Oxygen
Beams
J. P. Crumley, C. A. Cattell, R. L. Lysak,
and J. P. Dombeck

• 2000/144, August 2000
Angular-Dependence of the Penetration
Depth in Unconventional Superconductors
K. Halterman and O. T. Valls

—Physics continued
on next page

Names of University of Minnesota principal investigators appear in bold type.
• 2000/173, October 2000
 Polar Observations of Solitary Waves at High and Low Altitudes and Comparison to Theory

• 2000/174, October 2000
 Application of Discrete Light-Cone Quantization to Yukawa Theory in Four Dimensions
 J. R. Hiller

• 2000/178, October 2000
 Modification of Ion Trajectories in the Magnetotail Due to Low Frequency Waves
 T. Streed, C. Cattell, and I. Roth

• 2000/179, October 2000
 Particle Tracing in the Magnetotail: Dependence on Global Magnetic Field Model
 T. Streed, C. Cattell, and I. Roth

Political Science

• 2000/172, October 2000
 The Probability of Collective Choice with Shared Knowledge Structures
 W. Richards, B. D. McKay, and D. Richards

Surgery

• 2000/191, October 2000
 Molecular Dynamics Simulation in Solvent of the Phage 434 cl Repressor Protein DNA Binding Domain Amino Acids (R1-69) in Complex with its Cognate Operator (OR2) DNA Sequence
 L. F. Harris, M. R. Sullivan, P. D. Popken-Harris

Names of University of Minnesota principal investigators appear in bold type.
Email your requests to:

requests@msi.umn.edu
(be sure to include your postal address)

or you can complete this form and return it by fax:

(612) 624-8861

or mail to:

Research Reports Coordinator
Supercomputing Institute
1200 Washington Avenue South
Minneapolis, Minnesota 55415

Please send me the following research reports:

UMSI ________ UMSI ________ UMSI ________
UMSI ________ UMSI ________ UMSI ________

Name __
Address ___
__
__
__

Please check here if you would like to receive a copy of our 2000 Annual Research Report also available on the Internet at:

www.msi.umn.edu/general/Reports/ar2000

Our full bibliography is available on the Internet at:

www.msi.umn.edu/general/Reports

(some reports are available electronically from this site)
Please help us keep our mailing list up to date

Check one:

☐ Add name to mailing list
☐ Make corrections/changes as shown
☐ Remove name from mailing list

Name______________________________
Institution_________________________
Address____________________________

Phone______________________________
Email______________________________

(You can also email address changes to requests@msi.umn.edu)

Editor: Tom Lewis

For more information on the University of Minnesota Supercomputing Institute, please contact Donald G. Truhlar, Director, at the address given below. You may also consult the Supercomputing Institute’s Internet pages: www.msi.umn.edu.

This information is available in alternative formats upon request by individuals with disabilities. Please send email to alt-format@msi.umn.edu or call 612-625-1818.

The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation.

© 2000 University of Minnesota Supercomputing Institute

Contains a minimum of 10% postconsumer waste