Analyzing ChlP-Seq Data at the Command Line

Quick UNIX Introduction:

UNIX is an operating system like OSX or Windows. The interface between you
and the UNIX OS is called “the shell”. There are a few flavors of shell but the
MSI standard is bash. The shell is what you see, your environment, when you
open PuTTY or Terminal.

UNIX acts like any other operating system and allows you to store and create
files then use them during processes (e.g. running a program). Unlike OSX or
Windows UNIX is not visual and has to be navigated using simple commands
though the shell.

A Note about remote computing:

The goal of this tutorial is to introduce you to using MSI computational resources.
This means you are going to use your computer to talk to other computers and
tell those computers what to do. This also means that you have to make sure
you know how to navigate a different computational environment (UNIX) and the
data you need is somewhere MSI systems can access it (i.e. not on your
personal computer).

Brief Outline of MSI:

Personal Computer

lSS H

Login Node

gsub qsub

Storage

Login Node: When you access MSI systems the login node is the first system
that you connect to. The login node is only there to direct you to other MSI
systems.

Lab System: A group of computers that can be accessed using the isub
command. This is an older system with less computational power behind it.
https://www.msi.umn.edu/labs/pbs

ltasca System: This is the newer, faster, fancier computer system. Your group
will need to have SUs to use this system. SUs are free; Itasca is awesome; sign
up for SUs!

https://www.msi.umn.edu/resources/job-queues

PBS queuing: PBS is a queuing program that takes care of reserving and
ordering jobs to be run on the different systems. PBS takes special commands
that allow you to ask for a specific amount of time and computational power.
Once you submit your job (i.e. program) it will get in line (in the queue) and will
run once room opens up.

Storage: Each group is allotted some amount of storage the default amount is
100GB but your group can request as much storage as you can justify.

Software that you downloaded:

Komodo Edit: http://www.activestate.com/komodo-edit/downloads

This editor will allow you to write and edit scripts and save them to your MSI
space. By connecting Komodo Edit to MSI you can write, saved and edit
documents and scripts that are saved in MSI space. Komodo Edit is an
alternative to learning a true editor such as VI, Nano or Emacs. You should still
learn how to use an editor because you might not always have Komodo and the
editors can do much fancier tricks.

Preferences->Servers-> + button
Server type: SFTP

Name: MSI

Hostname: login.msi.umn.edu
Username: <your MSI username>
Password: <your MSI password>

FileZilla Client: https://filezilla-project.org/
Setup: https://www.msi.umn.edu/support/filezilla
This SFTP/FTP client will help you move files into and out of your MSI space.

Windows Users Only:
PuTTY: http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
Setup: https://www.msi.umn.edu/support/putty

Unlike Mac/OSX windows does not have a native UNIX terminal. PuTTY is a
terminal emulator for Windows and will allow you to interact with MSI systems
using UNIX commands.

Goals:
* Log into MSI and connect to the Lab system
* Learn some basic UNIX commands.
* Learn how to load software using the module system
* Learn how to map lllumina reads to a genome using BWA
e Learn how to call peaks with MACS14
* Learn how to write a bash script to automate running software
* Learn how to convert the bash script to a PBS script to submit jobs to the
lab queue.

Log into MSI
Log into MSI systems

Last login: Wed Sep 17 16:35:05 on ttyse00l
1jmills-MacBookAir:~ 1jmills$ ssh ljmills@login.msi.umn.edu
1jmills@login.msi.umn.edu's password: sskkksiskktkskkkx

Once you login you will see the welcome screen that contains some nice
information.

Last login: Sun Sep 14 09:09:43 2014 from x-134-84-0-80.vpn.umn.edu

For assistance please contact us at
https://www.msi.umn.edu/support/help.html,

help@msi.umn.edu, or 612-626-0802.

This is a login host. Please avoid running resource-intensive tasks on
this machine. Instead, use the isub command to be logged into a node
appropriate for long-running interactive jobs. See 'isub —--help' for
options

or https://www.msi.umn.edu/remote-access for more information.

Or, for non-interactive tasks, submit your job to one of MSI's HPC
resources (details at https://www.msi.umn.edu/hpc) or lab queues (details
at https://www.msi.umn.edu/labs/pbs).

Unused files in /tmp and /scratch.local will be

automatically deleted after 30 days.

1jmills@login@3 [~] %

As the @loginXX after your username in the ternimal indicates you are now
connected to the login node. While you can move around the filesystem and use
UNIX commands while connected to the login node you won’t beable to use any
of the software installed on MSI systems. In order to gain access to the installed
software you will need to connect to either the Lab or ltasca systems. We are
going to connect to the lab system though a command called isub.

1jmills@login@2 [~] % isub -m 8gb -w 4:00:00
gsub: waiting for job 217341.nokomis@@15.msi.umn.edu to start
gsub: job 217341.nokomis@@15.msi.umn.edu ready

When you use the isub command you are reserving computer space on the Lab
system. We used two “flags” with this command —m and —w. These falgs allow us
to specify how much memory and time we want to reserve and then use on the
Lab system. There are many other “flags” that can be used with isub which can
be displayed with the —h flag.

1jmills@labg59 [~
1jmills@labg59 [~

% isub -h

[}
“°

—_

Lets see where we are in the file system. When you log into the system for the
first time you are automatically taken to your home directory. Your home directory
will always have the format of /home/yourGroup/yourMSlaccount.

1jmills@labg59 [~] % pwd
/home/msistaff/1jmills
1jmills@labg59 [~] %

Lets take a look at what is in your home directory, do you have any files there?

1jmills@labg59 [~] % 1s

What about in your group directory?

1jmills@labg59 [~] % cd ..
1jmills@labg59 [/home/msistaff] % 1s

Lets go to a directory that will have some files in it.

1jmills@labg@l [~/chipTutoriall % cd /home/msistaff/public/
1jmills@labq@l [/home/msistaff/public] % 1s

basicChIP chenzler garbe hgl9_canonical_PARmaskedonY.fa qcIllumina

test _trimmomatic.sh wucsc.hgl9.fasta wucsc.hgl9.fasta.fai

Lets get a different view of the directory contents.

1jmills@labq@1l [/home/msistaff/public] % 1ls -1h
total 6.7G
drwxr-s———. 2 1jmills msistaff 4.0K Oct 23 10:46 basicChIP
drwxrwsrwx. 2 chenzler msistaff 4.0K Sep 23 08:38 chenzler
drwxr-sr-x. 4 jgarbe msistaff 4.0K Jun 13 08:43 garbe
drwxrwsrwx. 2 ljmills msistaff 4.0K Sep 22 11:13 qcIllumina
—-rwxr-x———, 1 1jmills msistaff 789 Sep 18 10:14 test trimmomatic.sh
-rw—-rw-r——. 1 jgarbe msistaff 3.0G Dec 11 2013 ucsc.hgl9.fasta
1

chenzler msistaff 3.5K Dec 11 2013 ucsc.hgl9.fasta.fai

The data we will need for the tutorial is in the basicChlIP directory. Move into that
directory and view the G1E_CTCF.fastq FASTQ file there using the less UNIX
command. What does this file look like?

1jmills@labg@l [/home/msistaff/public] % cd basicChIP/

1jmills@labq@1l [/home/msistaff/public/basicChIP] % less G1lE_CTCF.fastq

Move back to your home directory. There are three ways to do this, directly type
in your home directoy after cd, just use cd or use the ~ which represents your
home direcotry.

1jmills@labqg59 [
1jmills@labg59 [~
1jmills@labg59 [~

/home/msistaff/1jmills/

e b e
o o o°
O 00
O O O

Create a directory for the G1E_CTCF and G1E_input FASTQ files named
tutorial, move into that directory, then copy the fastq files into this folder. Don’t
remember the name of the files, Is to take a look again. Tab completion will also
help you here. When typing the names of folder or files pressing Tab will
complete the name for you.

1jmills@labg59 [] % cd tutorial

1jmills@labg59 [~] % cp
/home/msistaff/1ljmills/public/basicChIP/G1E_CTCF.fastq ~/tutorial
1jmills@labg59 [~] % cp
/home/msistaff/1ljmills/public/basicChIP/GlE_input.fastq ~/tutorial

You can also use a wildcard (*) to copy both FASTQ files at the same time.

1jmills@labq@l [~] % cp /home/msistaff/public/basicChIP/G1lE_x.fastq
~/tutorial

The first step when working with ChIP-Seq data is to map the back to the organism’s
genome. In this case we have sequence from DNA isolated from mouse G1E cell line.
We will use a program call BWA to map these reads back to the mouse (mm9)
genome.

BWA manual page: http://bio-bwa.sourceforge.net/bwa.shtml\

BWA requires a specially made index files for any genome that you want to map
reads to. These index files are part of the magic that allows BWA to map reads so
quickly. BWA indexes can be found for many genomes here:
/panfs/roc/rissdb/genomes

1jmills@labg@l [] % bwa mem
/panfs/roc/rissdb/genomes/Mus_musculus/mm9_canonical/bwa/mm9_canonical.f
a GlE_CTCF.fastq > G1lE_CTCF.sam

SAM (sequence alighment map) is the human readable alignment output. More
about SAM format can be found here: http: //samtools.github.io /hts-
specs/SAMv1.pdf

Let’s look at the SAM file.

1jmills@labq@1l [/home/msistaff/public/basicChIP] % less G1lE_CTCF.sam

What does this file contain? Can you find the alignment information?

While SAM files are great the peak finder we are using MACS14 does not take SAM
formatted files. Instead we will convert these SAM files to BAM files (binary
alignment map). BAM files are not human readable but contain the same
information as the SAM files

1jmills@labg@l [] % samtools view -S -b G1lE_CTCF.sam > G1lE_CTCF.bam

While running jobs straight from the command line is useful there are some
disadvantages:
1) You have to type the commands perfectly.
2) You don’t have a record of what you did.
3) ltis not easy to run lots of commands in a row or to run the same
command again.
4) You have to wait around for the software to finish before you can do
something else.
5) YOU DON'T HAVE A RECORD OF WHAT YOU DID!!!

Don’t worry there is an easy (ish) way to over come all of these issues...
Submitting jobs via and PBS script!

Copy bwa_mem_aln.sh from /home/msistaff/public/basicChIP into your tutorial
directory. The open this file in Komodo Edit, File -> Open -> Remote File. You will
need to select MSI from the Server drop down menu then navigate to the tutorial
directory.

Bwa_mem_aln.sh

#!/bin/bash -1

#PBS -1 nodes=1:ppn=4,mem=15GB,walltime=4:00:00
#PBS -m ae

#PBS -j oe

#PBS -N BWA_mem

cd /home/msistaff/ljmills /chipTutorial

module load bwa
module load samtools

bwa mem -t $PBS_NP
/panfs/roc/rissdb/genomes/Mus_musculus/mm9_canonical/bwa/mm9_canonical.fa
G1E_CTCF.fastqg > G1E_CTCF.sam

samtools view -S -b G1E_CTCF.sam > G1E_CTCF.bam

This PBS script is writen in a scripting language called bash. The very first line is
called the Sha-Bang and tells the system you are on how to interperate the
folllowing commands. Bash is a scripting language that has the ability do do lots
and lots of things. My favorite Bash scripting guide can be found here:
http://www.tldp.org/LDP/abs/html/

Lines that begin with #PBS are commands that will be interperted by the PBS
queuing program. Like isub the PBS commands reserve a specific amount of
computational resources to be used to complete the items in your script.

The rest of the script are the same commands that you typed into the terminal to
run FastQC and Trimmomatic. What elements of this script do you need to
change so that it will work for you? Hint: cd to your directory.

Lets submit this PBS script to the Lab queue using the gsub command.

1jmills@labq@1 [/home/msistaff/public/basicChIP] % gqsub bwa_mem_aln.sh
16648.nokomis@015.msi.umn.edu

The number that pops up when you submit a job is the jobid and is confirmation
that your job was submitted to the queue.

You can check the status of your job using gstat, you will also get an email when
your job finishes or if it is cancelled because of an error (aborts). Using the —u
flag will let you see only your jobs.

1jmills@labg@l [/home/msistaff/public/basicChIP] % gstat —-u 1ljmills

nokomis@@15.msi.umn.edu:

Req'd
Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time
S Time
16648.nokomis0015.msi. 1jmills lab BWA_mem == 1 4 15gb
04:00:00 Q ==

You should have two jobs running, one will be the isub job that you started to
connect to the Lab system, the other will be the job you just submitted. The S
column is the status of your job: R is running, Q is queued and C is cancelled.
When a job finishes it will go though the C state even if there wasn’t an error.

What is in your tutorial directory once the job finishes? What do the error and
output files contain?

While bwa_mem_aln.sh is a nice record of what you did it is not very flexible and can
only be used on these specific files. Lets look at another PBS bash script that is a bit
more flexible. Copy bwa_mem_aln_v.sh and bwa_mem_aln_for.sh into your tutorial
directory.

Bwa_mem_aln_v.sh

#!/bin/bash -1

#PBS -1 nodes=1:ppn=4,mem=15GB,walltime=4:00:00
#PBS -m ae

#PBS -j oe

#PBS -N BWA_mem

cd /home/msistaff/ljmills/chipTutorial

module load bwa
module load samtools

INDEX=/panfs/roc/rissdb/genomes/Mus_musculus/mm9_canonical/bwa/mm9_canonical.fa
FASTQ=G1E_CTCF.fastq

bwa mem -t $PBS_NP $INDEX $FASTQ > $FASTQ.sam
samtools view -S -b $FASTQ.sam > $FASTQ.bam

In this PBS bash script variable INDEX and FASTQ are used in the bwa mem call
instead of directly inputting these files. This would allow you to re-run the same
commands using different FASTQ files and indexes. Again this script is not as flexible
as it could be, how could you write a script to map multiple FASTQ files?

Bwa_mem_aln_for.sh

#!/bin/bash -1

#PBS -1 nodes=1:ppn=4,mem=15GB,walltime=4:00:00
#PBS -m ae

#PBS -j oe

#PBS -N BWA_mem

cd /home/msistaff/public/basicChIP

module load bwa
module load samtools

INDEX=/panfs/roc/rissdb/genomes/Mus_musculus/mm9_canonical/bwa/mm9_canonical.fa

for FASTQ in G1E_CTCF.fastq G1E_input.fastq
do
bwa mem -t $PBS_NP $INDEX $FASTQ > $FASTQ.sam
samtools view -S -b $FASTQ.sam > $FASTQ.bam
done

While this script looks very simple it has a few new concepts in it.

Variables- both FASTQ and INDEX are variables. When the variable is first set
you only need to give the name of the variable (i.e. FASTQ) but when you then
refer to (try to use) the variable you will need to add a $ (i.e. SFASTQ).

For Loop- let you run the same command over a list. The general structure of a
for loop in bash is

for argin [list]

do

command(s)

done

The list can be as long as you need it to be. It can also be a UNIX command that
lists the files for you so you don’t have to type them in yourself. Edit your script
to match the for loop below.

Lets run bwa_mem_aln_for.sh so we can get BAM files for both of the FASTQ files in
your tutorial directory.

1jmills@labg@l [] % qsub bwa_mem_aln_for.sh
16655.nokomis@@15.msi.umn.edu

Great now we have all of the files we need to start to call peaks in our data. There
are a couple more BAM files in /home/msistaff/public/basicChIP that we will also
use when we call peaks. Copy G1E_ER4_CTCF.fastq.bam and
G1E_ER4_input.fastq.bam into your tutorial folder using the cp command. Also, copy
macs14.sh into your tutorial folder.

1jmills@labq@l [] % cp /home/msistaff/public/basicChIP/GlE_ER4_x.bam
~/tutorial

1jmills@labq@l [] % cp /home/msistaff/public/basicChIP/macsl4.sh
~/tutorial

We are using a program called MACS to call peaks in our data. MACS using the
alignment files to try and identify regions of the genome where more reads align as
compared to the backgroupd signal. MACS will also use the alignment from your

input sample to make sure the build up of reads is because of your antibody
isolation and not an artifact of genome structure.

MACS manual: https://github.com/taoliu/MACS/blob/macs v1/README.rst

Open macs14.sh in Komodo Edit.

#!/bin/bash -1

#PBS -l nodes=1:ppn=4,mem=15GB,walltime=4:00:00
#PBS -m ae

#PBS -j oe

#PBS -N macs

cd /home/msistaff/public/basicChIP

module load macs

macs14 -t G1E_CTCF.fastqg.bam -c G1E_input.fastq.bam -f BAM -g mm --bw 300 -w -S -n
G1E_CTCF _macs

macs14 -t GIE_ER4_CTCF.fastq.bam -c G1E_ER4_input.fastq.bam -f BAM -g mm --bw 300 -w -S
-n G1E_ER4_CTCF_macs

To call peaks with the most confidence MACS needs both a control (-c input sample)
and treatment (-t ChIP sample) alignment file. MACS also wants to know the size of
the genome (-g) and bandwidth or sonication fragment size (--bw). The combination
of the -w and -S flag have MACS write a single WIG file from the data that
encompases the whole genome. The -n flag gives a name to the output.

