
Introduction to Compiling and Profiling at MSI

Minnesota Supercomputing Institute

University of Minnesota

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 1 / 46

Welcome to ”Compiling and Profiling” tutorial

Tutorial

Training level

Beginner

Presenters

Ham Lam (lamx0031@umn.edu)
Angel Mancebo Jr. (mance012@umn.edu)

Recommended background

Familarity with Linux
Basic programming experience

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 2 / 46

Tutorial outline

Compilers at MSI

Compiling and Linking Libraries

Automated building system (GNU Make)

Profiling applications

Hands-On demo

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 3 / 46

HPC clusters at MSI

Agate

412 nodes, AMD processors with 64-128 cores per node

344 CPU compute nodes (244 w/ 512g memory, 100 w/ 2TB
memory)

264 Nvidia A100 GPUs are available

50 nodes have 4 A100 GPUs connected via NVLink and 512 GB of
memory
8 nodes have 8 A100s and 1 TB of memory

10 GPU interactive nodes, 8 A40 GPUs 512g memory each

Mesabi

741 Compute nodes (Intel CPU) with 17,784 total cores

40 nodes with 2x Nvidia Tesla GPUs

32 nodes with 480g SSDs

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 4 / 46

HPC clusters at MSI

Mangi

164 AMD ROME nodes

20,992 cores

AMD 2TB RAM nodes

V100 GPU nodes, V100 4-way and 8-way nodes

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 5 / 46

Compilers

A compiler is a program to turn human readable source code into a
machine code ”program” for execution.

Not all programming languages use compilers, but the fastest
executing ones do.

In the process of compiling most compilers will partially ”optimize”
code for faster more efficient execution.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 6 / 46

Interpreters vs Compilers

An interpreter (e.g. Python, Perl)

Reads each character then figure out what has to be done.

When you use an interpreter you are actually using a sophisticated
machine language program that someone wrote.

Your program stays in text file format and is run as a text file.

An interpreted program must be re-interpreted each time it is run.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 7 / 46

Interpreters vs Compilers

A compiler(C,C++,fortran)

More difficult to use than interpreters

Your program is translated into a machine language which is then run

Once a program has been compiled it may be run as many times as
you want without recompiling

Compilers are used by people who need programs that run faster than
an interpreter would allow

Many compilers also attempt to optimize the code for performance

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 8 / 46

What a compiler does?

1 Preprocessing: Parses and alters code

2 Compiling: Translate to Assembly language

3 Assembly: Translate into machine code

4 Linking: Links machine code pieces and libraries into final machine
code program

It is possible to stop at intermediate stages

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 9 / 46

Compilers available at MSI

Intel compilers

C compiler: icc

C++ compiler: icpc

fortran compiler: ifort

Good optimization and integration with Intel libraries, e.g. MKL

module avail intel *list all available versions
module load intel *load default version of the intel compiler

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 10 / 46

Compilers available at MSI

GNU compilers

C compiler: gcc

C++ compiler: g++

fortran compiler: gfort

Free and open source

module avail gcc *list all available versions
module load gcc *load default version of the gcc compiler

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 11 / 46

Compilers available at MSI

PGI compilers

C compiler: pgcc

C++ compiler: pgcpp

fortran compiler: pgfortran

module avail pgi
module load pgi

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 12 / 46

Compilers available at MSI

Clang compilers

C compiler: clang

C++ compiler: clang++

fortran compiler: No fortran compiler

module avail clang
module load clang

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 13 / 46

Compilers available at MSI

Nvidia’s nvcc compilers

C compiler: nvc

C++ compiler: nvc++

fortran compiler: nvfortran

module avail nvidia-hpc-toolkit
module load nvidia-hpc-toolkit/20.11

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 14 / 46

Where to compile code?

Users should compile on the node type where they intend to run the code.
Most compiler are smart enough to query the local machine type and will
tailor the compilation toward that specific architecture (note, one can
usually also force machine-specific compilations using compiler options).

Use a dedicated interactive session

Submit a batch job (if building large software)

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 15 / 46

Compiling commands

Let’s clarify some terms:

code, just a file containing a computer program.

source code (source file), a program written in a higher level language
such as Python, C, or even assembler.

object code, the output of a compiler or an assembler

executable code, a file that is ready to run on the machine

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 16 / 46

Compiling commands

Usual format: compiler-name flags sourcefiles

compiler-name should be the name of the compiler being used.

flags are optional arguments (called flags) that change compiling
options. Most flags begin with the minus sign (-).

sourcefiles are the names of the source code files that are being
compiled.

By default, most compilers name the compiled program a.out

Example

gcc -o my.exe mysourcecode.c

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 17 / 46

Useful compiler options

To specify a name for the compiled program use the -o flag followed
by the desired program name.

Intel compiler examples:
icpc -o myprogram mysourcecode.cpp
icc -o myprogram mysourcecode.c
ifort -o myprogram mysourcecode.f

For multiple source files the command looks like this:

g++ -o myprogram mysourcecode1.cpp mysourcecode2.cpp

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 18 / 46

Optimization flags

The compiler can attempt to perform some automatic optimizations
of the source code, and this can often tremendously improve program
speed.

The flags controlling optimization begin with -O (oh, not zero), and
most compilers support three options: -O1, -O2, -O3.

The automatic optimizations can remove unnecessary portions of
code, and reorganize code so that it performs more efficiently.

Using optimization flags can sometimes slightly alter the output of a
program. Usually any difference will occur in the smallest digits of
numbers being calculated, and will only be significant if the program
is very sensitive to such values.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 19 / 46

Compiling using object files

It is sometimes useful to compile in steps, first compiling to object
(.o) files, and then linking the object files.

Use the -c flag: icpc -c mysource1.cpp mysource2.cpp

This will produce files named mysource1.o mysource2.o

To perform the linking use the command:

icpc -o myprogram mysource1.o mysource2.o

This will link the object files and create an executable named
myprogram.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 20 / 46

Compiling using object files

Advantages

It reduces the time to recompile after making small changes to a large
program. In such a case only a few of many object files will need to
be recompiled. It also reduces compile time in many files that have
shared dependencies.

It makes it easier to work collaboratively on code, with each coder
compiling their own object files which are part of a larger program.

It allows the linking of object files that were created via different
programming languages (care must be taken with this).

Disadvantages

It can prevent some compiler optimizations because it makes it harder
for the compiler to determine how all the pieces fit together. This
effect is usually minor.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 21 / 46

Preprocessor Commands

Preprocessor statements within program code can be used to include other
code and insert constants and code snippets. Most compilers use # to
indicate a preprocessor directive.

Include statements insert code

#include <stdio.h> This will cause the preprocessor to insert the
contents of the stdio.h file at this place in the code.

Define statements insert constants or code snippets

#define pi 3.141592653 This will cause the preprocessor to replace
every instance of pi with the numerical representation.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 22 / 46

Linking with Libraries

Linking with Libraries

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 23 / 46

Linking wth Libraries

Library files come in two types: dynamic and static

Dynamic (shared) library files have names ending in .so

Static library files have names ending in .a

Dynamic (shared) libraries remain distinct from programs, and are loaded
by a program during execution when they are needed. Dynamic libraries
can be upgraded without recompiling the programs using them (within
limits).

Static libraries become part of the program using them. When a static
library is used while compiling the program generated will always load that
version of the library.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 24 / 46

Where the Compiler Searches for Files

The compiler needs to locate:

Source code files

Files included via preprocessor statements

Library files

The compiler will search for source code files in the place the compiling
command is executed.

Include files and library files are looked for in a number of locations
governed by compiling options.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 25 / 46

Where the Compiler Searches for Files

Include files are files containing code (often ”header files”) that will
be inserted into the source code by the preprocessor.

Places specified in the compiling command using the -I (uppercase i)
flag:

For example: gcc -I /soft/fftw/include -o myexe source.c

Places referenced by environmental variables: CPATH, FPATH,
C INCLUDE PATH, CPLUS INCLUDE PATH, INCLUDE

The variables are mostly C, C++, Fortran specific

”Default” locations like: /usr/include etc

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 26 / 46

Where the Compiler Searches for Files

Library files are files containing machine code that the program will
link to during the linking step of compiling.

Places specified in the compiling command using the -L flag,

For example: gcc -L/soft/fftw/lib -o myexe source.c

Places referenced by environmental variables: LD LIBRARY PATH,
LIBRARY PATH

Default locations like: /usr/lib, /usr/lib64, etc

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 27 / 46

Where the Compiler Searches for Files

It is possible to alter where the compiler searches for files by altering
environment variables:

export
LD LIBRARY PATH=/soft/fftw/lib:$LD LIBRARY PATH

This would make the compiler search within /soft/fftw/lib directory

Equivalent at compile time:

icc -L/soft/fftw/lib mysource.c

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 28 / 46

Additional Tips

When a compiler module is loaded it makes changes to the
environment, mostly by altering environmental variables. To see what
a module does use the command: module show module-name

By examining what changes the module makes you can determine
where the library and header files are located. For compiling some
complex programs you may need to specify these locations using the
-L and -I flags.

Sometimes compiling is sensitive to the order in which the library files
are linked. If linking with libraries seems to fail you may need re-order
the linking flags in the compile command.

It is generally unsafe to have multiple module versions of the same
compiler loaded simultaneously.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 29 / 46

Utilities for Examining the Compiled Files

file: determine the File type

nm: List symbol table of object files

ldd: List dynamic-linked libraries

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 30 / 46

Bulding systems

Most codes are complex with interdependent source files.

Individual files need to be compiled into object files (.o) then linked
into a binary (-c option)

gcc -c foo.c -o foo.o
gcc -c bar.c -o bar.o
gcc foo.o bar.o -o foobar.exe

NOTE: Linking is required to satisfy undefined external references

At scale (10+ files), this becomes cumbersome

We need automation!!

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 31 / 46

GNU Make utility

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 32 / 46

GNU Make

What is GNU Make?

GNU make is a tool which controls the generation of executables and
other non-source files of a program from the program’s source files.

It automatically determines which parts to (re)build

It uses a ”Makefile” to keep track of which files need to be
recompiled

Uses ”Date Modified” timestamp to know when changes are made to
any files

If a single dependency changes it is recompiled plus all dependent
sources

Run one command (make) and let it worry about each call to compile
and link.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 33 / 46

What is a Makefile?

Input file specifically for the GNU Make utility

Similar to a shell script

Specifies targets, rules, and dependencies for each part of build

Targets: callable scriptlets that have dependencies and rules

Rules: build tasks/actions (command lines)

Dependencies: control target call order

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 34 / 46

Using a Makefile

Executing Make: >make

Make looks for a file named makefile or Makefile in the current
directory

Specify a different file: >make -f other.mk

Specify a target: >make test.exe

Use all available cores: >make -j
(best on a compute node, e.g. >srun --ntasks=4)

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 35 / 46

Profiling

The goal of profiling is to gain insight into program execution that
helps to identify any potential performance problems. These can be
the algorithmic code makeup, memory management, communication,
or I/O.

Profiling allows us to pinpoint the most resource-intensive spots
(hotspot) in an application. A hotspot is the parts of code the
program spends most of its time executing.

Profiling can also identify bottlenecks that affect application’s
performance.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 36 / 46

Introduction

Python example: standard libraries

time

For simple runtime measurements.

cProfile

Fast profiler

profile

Compatible with cProfile but slower, useful for extending the
capabilities

pstats

For viewing profiler results generated from cProfile or profile

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 37 / 46

Hands-on

Task: Use a profiler to improve the following code

"""Generates random integers and returns how many are positive."""

import numpy as np

def is_positive(x):

"""Return True if x is a positive number, otherwise return zero."""

return x > 0

def count_positive(arr):

"""Loop through numbers in arr and return how many are positive."""

output = np.array([], dtype=’uint32’)

for n in arr:

output = np.concatenate([output, [is_positive(n)]])

result = sum(output)

return result

np.random.seed(0)

myarray = np.random.randint(low=-100, high=100, size=300000)

result = count_positive(myarray)

print(’Result:’, result)

Result: 148828

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 38 / 46

Hands-on

Timing code

import time

t0 = time.time()

result = count_positive(myarray)

print(’Result:’, result)

print(f’{time.time() - t0:.3g} s’)

Result: 148828

4.16 s

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 39 / 46

Hands-on

Viewing profiler results

import cProfile

profiler = cProfile.Profile()

profiler.enable()

result = count_positive(myarray)

profiler.disable()

Write to a file for viewing later

profiler.dump_stats(’code_profile’)

print(’Result:’, result)

profiler.print_stats(sort=’cumtime’)

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 40 / 46

Hands-on

Viewing profiler results

Result: 148828

1200004 function calls in 4.265 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.114 0.114 4.265 4.265 python-RS8HnE:9(count_positive)

300000 0.060 0.000 4.091 0.000 <__array_function__ internals>:2(concatenate)

300000 4.020 0.000 4.020 0.000 {built-in method numpy.core._multiarray_umath.implement_array_function}

300000 0.039 0.000 0.039 0.000 python-RS8HnE:5(is_positive)

1 0.020 0.020 0.020 0.020 {built-in method builtins.sum}

300000 0.011 0.000 0.011 0.000 multiarray.py:148(concatenate)

1 0.000 0.000 0.000 0.000 {built-in method numpy.array}

1 0.000 0.000 0.000 0.000 {method ’disable’ of ’_lsprof.Profiler’ objects}

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 41 / 46

Hands-on

Addressing the hotspots

def count_positive(arr):

result = sum(is_positive(arr))

return result

profiler2 = cProfile.Profile()

profiler2.enable()

result2 = count_positive(myarray)

profiler2.disable()

Make sure the new result is identical!

assert result == result2

profiler2.dump_stats(’code_profile2’)

print(’Result2:’, result2)

profiler2.print_stats(sort=’cumtime’)

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 42 / 46

Hands-on

Addressing the hotspots

Result2: 148828

4 function calls in 0.288 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.000 0.000 0.288 0.288 python-xmbMGk:1(count_positive)

1 0.288 0.288 0.288 0.288 {built-in method builtins.sum}

1 0.000 0.000 0.000 0.000 python-RS8HnE:5(is_positive)

1 0.000 0.000 0.000 0.000 {method ’disable’ of ’_lsprof.Profiler’ objects}

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 43 / 46

Hands-on

Profiling Python code from the command line

python -m cProfile -o profiler_results myscript.py

python -m pstats profiler_results # Opens interactive viewer

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 44 / 46

Hands-on

Gotchas

Use tests to verify that your optimized code yields the same results as
your old code

Avoid premature optimization

It can be better to start out writing code that is easy to read and to
validate before sacrificing these things for perceived performance gains
Don’t spend time guessing: profile your code

There’s no free lunch: profilers incur an overhead, so keep that in
mind and calibrate the profiler when it matters.

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 45 / 46

Hands-on

Thank you!

If you have questions:

help@msi.umn.edu

lamx0031@umn.edu

mance012@umn.edu

Minnesota Supercomputing Institute Compiling and Profiling University of Minnesota 46 / 46

	Introduction
	Hands-on

