
Introduction to Job Submission and Scheduling

Minnesota Supercomputing Institute

University of Minnesota

Ham C Lam, Ph.D.

Angel Mancebo, Ph.D.

MSI Research Informatics - Informatics and Computing

Fall 2023

Job submission and scheduling

Recommended background
● Basic UNIX commands and BASH

scripting experience

Training Level
● Beginner

Tutorial format
● Lecture combined with hands-on

examples of submitting jobs

Overview

o Connect to MSI

o HPC hardware

o Job scheduling

o Submit Jobs

o Monitoring Jobs

o Troubleshooting Tips

o Hands-on demo

Job submission and scheduling

Frequently, research problems that use computing can outgrow the desktop or laptop computer

● A statistics student wants to cross-validate their model. This involves running the
model 1000 times – but each run takes an hour. Running on their laptop will take over a
month!

● A genomics researcher has been using small datasets of sequence data, but soon will be
receiving a new type of sequencing data that is 10 times as large. It’s already
challenging to open the datasets on their computer – analyzing these larger datasets
will probably crash it.

● An engineer is using a fluid dynamics package that has an option to run in parallel. So
far, they haven’t used this option on their desktop, but in going from 2D to 3D
simulations, simulation time has more than tripled and it might be useful to take
advantage of that feature.

In all these cases, what is needed is access to more computers that can be used at the same
time.

Why need access to more computers?

High Performance Computing (HPC) at MSI
What can I do with HPC?

❏ Solving large problems with
little time

❏ Run simulation and analysis of
large volume of data that
would not be possible with
standard computers

https://www.msi.umn.edu/research

https://www.msi.umn.edu/research

Connecting to MSI

Job submission and scheduling

Connecting to MSI

Open OnDemand

For more information: https://www.msi.umn.edu/content/using-openondemand

Web portal

Point your brower to https://ondemand.msi.umn.edu

https://ondemand.msi.umn.edu/

Connecting to MSI

ssh -Y <username>@mesabi.msi.umn.edu
ssh -Y <username>@mangi.msi.umn.edu
ssh -Y <username>@agate.msi.umn.edu

Secure shell (ssh)

Agate agate.msi.umn.edu (ahl0<1,2,3,4>)

Mesabi mesabi.msi.umn.edu (ln000<n>)

Login Nodes (Not for computation workload)

Whenever you log in to MSI, you are directed to a login node. A login node
can be viewed as an interface to compute nodes.

Mangi mangi.msi.umn.edu (ln1001,ln1002)

ssh -Y <username>@agate.msi.umn.edu
ssh -Y <username>@mesabi.msi.umn.edu
ssh -Y <username>@mangi.msi.umn.edu

Secure shell (ssh) Connecting to MSI

 Overview of HPC and job scheduling

Job submission and scheduling

HPC clusters

 Agate
● 412 nodes
● AMD processors with 64-128

CPU cores per node
● 344 CPU compute node

○ 244 have 512G mem
○ 100 have 2TB mem

● 58 GPU compute nodes
○ 50 A100 512G mem
○ 8 A100 1TB mem

● 10 GPU interactive nodes
○ 8 A40 GPUs 512G mem each

Job submission and scheduling

Agate is ranked 497 out of 500 on Top500 list!

● Over 700 nodes
○ Memmory configuration

■ 616 nodes have 64GB RAM
■ 24 nodes have 256GB RAM
■ 16 nodes have 1TB RAM
■ 40 k40 GPU nodes with 128GB RAM

● 17,784 cores provided by Intel Haswell
Processors

● 480GB SSD available on 32 nodes

HPC clusters

 Mangi

● 164 nodes
● AMD ROME processors
● 20,992 compute cores
● 12 nodes with 4-way v100 GPU
● 1 node with 8-way v100 GPU

○ Memory configuration
■ 144 nodes with 256GB RAM
■ 10 nodes with 512GB RAM
■ 10 nodes with 2TB RAM

Job submission and scheduling

 Mesabi

Job submission and scheduling

❏ Q: What is job scheduling?
A: It is the process of arranging, controlling and
optimizing work and workloads in a shared HPC environment.

Q: Why do we need job scheduling?
A:

● MSI serves over 900 groups and over 4500 users with
limited HPC resources so we all must share the
computing hardware.

● Automated allocation of limited resources

● Tracking and monitoring jobs

Job submission and scheduling

Quick Slurm highlights

Slurm decides who gets what and when!

Simple Linux Utility for Resource Management (SLURM) is an
open source, scalable cluster management and job
scheduling system. It was created at Livermore Computing
Center and has since been installed in many of the Top 500
supercomputers around the world.

● It schedules jobs to be executed on a cluster of machines

based on priorities

● Pending jobs are “queued” jobs waiting to be executed

● Jobs are submitted by users via shell commands

● It takes care of Input/Output (I/Os)

● It launches jobs on assigned compute node(s) and clean up

after each job finishes

- A network of computers form the high
performance computing system called a
cluster.

- Each computer in a cluster is called a
node.

- Each node can talk to each other
through a high speed network.

- Each node has multiple processors with
multiple cores and large memory.

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

CPU socket CORE ID
Physical ID = {0, 1}

High Performance Computing (HPC)

Hardware Job submission and scheduling

Compute
Node

● A logical set(s) of compute nodes grouped together
depending on their hardware characteristics or
function.

● A slurm job partition can been seen as an
automated waiting list for use of a particular set
of computational hardware.

● Different job partitions have different resources
and limitations.

● Make sure to choose a job partition which has
resources and limitations suitable to your jobs

Slurm Partitions Job submission and scheduling

Q: Where do I find the hardware? A: Slurm partitions

Slurm Partitions Job submission and scheduling

Q: Where do I find the hardware?

A: Slurm partitions
Federated Partitions (msismall, msilarge, msibigmem, msigpu,interactive,
interactive-gpu, preempt, preempt-gpu)
Jobs that can run on either Agate or Mesabi/Mangi
Job arrays will only run on the cluster you submit the job on

Agate Partitions (agsmall, aglarge, ag2tb, a100-4,a100-8, interactive,
interactive-gpu, preempt, preempt-gpu)

Mesabi/mangi Partitions (small, large, max, ram256g, ram1t, k40, v100, amdsmall,
amdlarge, amd512, amd2tb, interactive, interactive-gpu, preempt, preempt-gpu)

MSI newest HPC cluster with the best hardware, and should be your first
choice for submitting jobs!

https://www.msi.umn.edu/queues
https://www.msi.umn.edu/content/choosing-job-partition#slurm

*Users are limited to 2 jobs in the interactive and interactive-gpu partitions.
*Jobs in the preempt and preempt-gpu partitions may be killed at any time to make room for jobs in the interactive or
interactive-gpu partitions.

● A small text file must be prepared by an user that says what
program to run, where to get the input, and where to put the
output.

● The user then submit this job script to the SLURM scheduler
which decides when and where it will run.

● Once the job has finished, the user can retrieve the results of
the calculation.

● There is no interaction between the user and the program while
the job is running.

What is a job? Job submission and scheduling

Job is
added to

the
partition

Submission Priority

WAIT

Resources
allocation

and
Execution!

Assign
job

priority
value

Job waits until
(1) resources are
available
(2) No job with
higher priority in
partition

Slurm will kill your job
at runtime if your job
exceeds the requested
amount of resources.

!

Life cycle of a slurm job Job submission and scheduling

My job’s priority

More information: https://www.msi.umn.edu/content/hpc

Job priority Job submission and scheduling

Accessing software

Software Job submission and scheduling

Software at MSI

❏ MSI has hundreds of software modules. Software environment
modules are used to make software available to you!

❏ A module is a self-contained description of a software package
- it contains the settings required to run a software package
and, usually, encodes required dependencies on other software
packages.

❏ On a high-performance computing system, it is often the case
that no software is loaded by default. If we want to use a
software package, we will need to “load” the module ourselves.

MSI also maintains a searchable directory of available software at
https://www.msi.umn.edu/software.

Software Job submission and scheduling

https://www.msi.umn.edu/software

Working with software modules

Software Job submission and scheduling

Description Command Example

See all available modules module avail module avail

Load a module module load module load matlab/2021a

Unload a module module unload module unload matlab/2021a

Unload all modules module purge module purge

See what a module does module show module show matlab/2021a

List currently loaded modules module list module list

The module command is used to interact with environment modules. An
additional subcommand is usually added to the command to specify what you
want to do.

● The module system handles software versioning and package conflicts for you automatically.

Module command hands-on examples

Job submission and scheduling

module avail

module load

module unload

module purge

module show

module list

MSI also maintains a searchable directory of available software at
https://www.msi.umn.edu/software.

https://www.msi.umn.edu/software

 Run scripted and interactive jobs

Job submission and scheduling

To access compute nodes (CPUs and GPUs), you must
either submit a job script or initiate an
interactive session.

sba- - Submit a job script to Slurm for remote execution

 Submit scripted jobs
sbatch

Request resource allocation through a job script or at the command
lines using the sbatch command. If invoked at command lines with
options, these options take precedence over the #SBATCH options in the
job script.

%sbatch demo1.sh
%sbatch: Setting account: support
%Submitted batch job 9704508

#!/bin/bash
#SBATCH --job-name=demo1

echo "I ran on node: "
hostname; sleep 120

Simple job script

submit a job

Job submission and scheduling

The #SBATCH directives must appear at the top of the submission file,
before any other line except for the very first line which should be
the #!/bin/bash.

https://slurm.schedmd.com/sbatch.html

#SBATCH directives

--
no
de
s=
N

--
nt
as
ks
=N

--
me
m=
N

--
me
m-
pe
r-
cp
u=
N

--
tm
p=
N

--
ti
me
=h
rs
:m
in
:s
ec

-p
=<
Na
me
>

--
ex
cl
us
iv
e?

sbatch will stop processing further #SBATCH directives once the
first non-comment non-whitespace line has been reached in the script.

Job submission and scheduling

 Check status of jobs

%sbatch demo1.sh
sbatch: Setting account: support
Submitted batch job 9704508
%squeue -u lamx0031
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 9704508 small demo1.sb lamx0031 PD 0:00 1 (None)

Use command squeue --me (or -u <username>) to view jobs status.

(ST) JOB STATE CODES

 PD PENDING Job is awaiting resource allocation

NODELIST (REASON)

CG COMPLETING Job is in the process of completing

CA CANCELLED Job was explicitly cancelled by the user/admin

R RUNNING Job currently has an allocation

Priority One or more higher priority
jobs exist for this partition

Resources The job is waiting
for resources to become
available

ReqNodeNotAvail Some node
specifically required by the
job is not currently
available.

Job submission and scheduling

Capture outputs of jobs

#!/bin/bash
My first job script
#SBATCH --job-name=demo1

#SBATCH --output demo1_%j.output # -o (shorthand)
#SBATCH --error demo1_%j.error # -e (shorthand)

echo "I ran on node: "
hostname
sleep 120

Simple job script

%cat demo1_9704508.output
I ran on node:
cn1140

By default, the output of a job is saved in a file called “slurm-<job
id>.out”. The ‘#SBATCH --output’ can be used to specify a different
name and location of the output file. The ‘#SBATCH --error <filename>’
is used to capture stderr of the job to a file.

Job submission and scheduling

Job account

Each job has an associated account name that corresponds to a PI group. If you belong to multiple
groups, you can specify an account that will be used by the job.

#!/bin/bash

#SBATCH --job-name=demo1
#SBATCH --account=support

echo "I ran on node: "
hostname
sleep 120

Your MSI user account is associated with the PI who created the account, known as
your primary group. If you are working with another PI on a project, you can use the
‘--account=<groupname>’ option to have jobs run under a different group that allows
you to have access to compute resources (quota space, files, etc) of that group.

You can use the “id” command to find out if you belong to more than one group:
%id <username>

Job submission and scheduling

 Submit scripted jobs Job submission and scheduling

Your job begins in the directory that it was submitted from.

#SBATCH -J: short for --jobname, name of the job.

#SBATCH -N : short for --nodes, number of nodes on which to run.

#SBATCH -n : short for --ntasks, number of tasks (CPU cores) to run job on.

#SBATCH -c : short for --ncpus-per-task, number of cpu per process.

#SBATCH -p partition: short for --partition, submit job to the partition queue.

○ Partitions can be found via the sinfo command.

#SBATCH -t hh:mm:ss: short for --time, request resources to run job for hh hours, mm
minutes and ss seconds.

 Submit scripted jobs Job submission and scheduling

List of common useful SLURM environmental variables and their meaning:

● SLURM_JOBID: Job ID number given to this job
● SLURM_JOB_NODELIST: List of nodes allocated to the job
● SLURM_SUBMIT_DIR: Directory where the sbatch command was executed
● SLURM_NNODES: Total number of nodes in the job's resource allocation.
● SLURM_NTASKS: Total number of CPU cores requested in a job.

 Interactive jobs

Job submission and scheduling

 Interactive jobs

salloc
It works like srun but always results in a new allocation
when it is invoked. This new allocation can be used to run
commands or programs.

Dedicated partitions for interactive workflow: interactive and interactive-gpu
(Users are limited to 2 jobs in the interactive and 2 jobs in interactive-gpu partitions)

● The most common use of srun is to launch an interactive session on a compute node
with the “--pty” option.
e.g. srun -t 100 -N1 -n1 -c1 -p interactive --pty bash #request a ‘shell’

Job submission and scheduling

 Interactive jobs

salloc
It works like srun but always results in a new allocation
when it is invoked. This new allocation can be used to run
commands or programs.

Dedicated partitions for interactive workflow: interactive and interactive-gpu
(Users are limited to 2 jobs in the interactive and 2 jobs in interactive-gpu partitions).

● User-provided command can be “/bin/bash” (to launch an interactive shell) or a
script with arguments.

lamx0031@ln0003 [~] srun --nodes 1 --ntasks 1 --cpus-per-task 4 -p small ./omp_hw
srun: Setting account: support
srun: job 7000821 queued and waiting for resources
srun: job 7000821 has been allocated resources
Hello World from thread = 0
Number of threads = 4
Hello World from thread = 2
Hello World from thread = 3
Hello World from thread = 1
lamx0031@ln0003 [~]

1 node, 1 task, 4 cores
with 1 thread per core

Job submission and scheduling

 Scripted job examples

Job submission and scheduling

Serial job

This is the simplest type of job which uses one core on a single compute
node. It is also our default setting when no “#SBATCH” statement is provided
in a job script.

#!/bin/bash

#SBATCH --job-name=demo1
#SBATCH --nodes=1 # specify one node
#SBATCH --ntasks=1 # specify one task per cpu-core
#SBATCH --mem=4g # request 4 gb (default is 1 gb)
#SBATCH -o demo1_%j.output
#SBATCH -e demo1_%j.error

echo "I ran on node: "
hostname
sleep 120

Job submission and scheduling

 Multithreaded job

#!/bin/bash
#SBATCH --job-name=multithreaded #
#SBATCH --nodes=1 # A single node count
#SBATCH --ntasks=1 # One task
#SBATCH --cpus-per-task=4 # Request 4 cores

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
./omp_helloworld

A multithreaded job launches one slurm task (process) which uses several CPUs.

Job submission and scheduling

This example script launches a single process with 4 CPU cores

Job array

#!/bin/bash
#SBATCH --job-name=my_array_job
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --time=00:10:00
#SBATCH --array=1-5 # 5 jobs

python arraytest.py file-${SLURM_ARRAY_TASK_ID}.txt >output_${SLURM_ARRAY_TASK_ID}

Creating a job array provides an easy way to group related jobs together. A job array is a collection of
jobs that differ from each other by only a single index parameter. All jobs in a job array must have the
same resource requirements.

Job submission and scheduling

Job arrays will only run on the cluster you submit the job on.

 More advanced scripted job examples

Job submission and scheduling

GPU jobs

#!/bin/bash

#SBATCH -p v100
#SBATCH --gres=gpu:v100:1

python script.py

Specify the type of GPU using ‘--gres=gpu:<type>:count

In addition to selecting a GPU partition, GPUs need to be requested for all GPU jobs.

Job submission and scheduling

You need to specify the GRES Generic Resource Scheduling parameter in your job script

http://slurm.schedmd.com/gres.html

Preempt jobs

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=10
#SBATCH --mem-per-cpu=1G
#SBATCH --time=01:00:00

#SBATCH --partition preempt
#SBATCH --requeue

module load parallel

use --resume to deal with interruption
parallel -v --delay .3 -j $SLURM_NTASKS --joblog logs/testjob.log --resume

Why run preemptable jobs?
Same priority value as non-preempt jobs but with a smaller fairshare impact!

What happen to my job when it is preempted?
Cancel or Requeue options: When re-queue, your job must be able to pick up where it
left off or can deal with interruption effectively when it restarts.

Partitions available: preempt and preempt-gpu
Note: Jobs submitted to preempt queue can be killed at any time to make room for interactive jobs.

Job submission and scheduling

Dependency jobs

#!/bin/bash
job1=$(sbatch --parsable dataprep.sbatch)
job2=$(sbatch --parsable --dependency=afterok:$job1 --kill-on-invalid-dep=yes analyze_data1.sbatch)
job3=$(sbatch --parsable --dependency=afterok:$job2 --kill-on-invalid-dep=yes analyze_data2.sbatch)
sbatch --dependency=afterok:$job3 --kill-on-invalid-dep=yes summary.sbatch

Jobs with dependency can be submitted to the scheduler and queued in the system. The
execution time of dependent jobs are varied depending on the ‘dependency’ option
specified.

#!/bin/bash
job1=$(sbatch --parsable dataprep.sbatch)
job2=$(sbatch --parsable --dependency=afterok:$job1 --kill-on-invalid-dep=yes analyze_data1.sbatch)
job3=$(sbatch --parsable --dependency=afterok:$job1 --kill-on-invalid-dep=yes analyze_data2.sbatch)
sbatch --dependency=afterok:$job2:$job3 summary.sbatch
if only depends on either job2 or job3
sbatch --dependency=afterok:$job2?$job3 summary.sbatch

Sequential multi step jobs

Fan-out jobs

Job submission and scheduling

Locations for jobs

/home/groupname/<MSI_Login_ID> directory ($HOME)
○ Most of the time you will stage and run your jobs here
○ Backed up in ~/.snapshot directory nightly

/scratch.local
○ Temporary storage space (/tmp or $TMPDIR) from a compute node.
○ The job script must copy the result files back to home directory at the

end of execution.
/scratch.global/$USER

○ My job produces many large intermediate files but I only need to keep a
few.

○ My group quota is not large enough for all of the intermediate and
persistent data.

○ It’s a shared space that is visible to all nodes (including login nodes)
○ Data in /scratch.global is not backed up and is deleted after 30 days.

https://www.msi.umn.edu/content/scratch-storage#Performance

Job submission and scheduling

Your job begins in the directory that it was submitted from.

https://www.msi.umn.edu/content/scratch-storage#Performance

 Monitoring scripted jobs

Job submission and scheduling

Monitoring jobsCurrent jobs

%squeue -u lamx0031 -l #-l gives more information about your job

squeue command gives all the jobs the scheduler is managing at the moment, use the “-u <your username>” option to list
your jobs only.

Executing squeue sends a remote procedure call to slurmctld. If enough calls from scontrol or other Slurm client
commands that send remote procedure calls to the slurmctld daemon come in at once, it can result in a
degradation of performance of the slurmctld daemon, possibly resulting in a denial of service.

lamx0031@cn1001 [14:03:43 ~] squeue -u lamx0031 -l
Thu Jan 06 14:03:47 2022
 JOBID PARTITION NAME USER STATE TIME TIME_LIMI NODES NODELIST(REASON)
 9780263 interacti bash lamx0031 RUNNING 40:38 4:00:00 1 cn1001

https://slurm.schedmd.com/squeue.html

Monitoring jobsCurrent jobs

Insert slurm email notification statements in the job script

#!/bin/bash

#SBATCH --mail-type=begin # send email when job begins
#SBATCH --mail-type=end # send email when job ends
#SBATCH --mail-user=<id>@umn.edu

echo "I ran on node: "
hostname
sleep 120

Sender: MSI Slurm <msi_slurm@msi.umn.edu>

Subject: Slurm Job_id=8343769 Name=jobscript.sbatch Began, Queued time 00:05:00
Body: <empty>

--mail-type=begin

Monitoring jobsCurrent jobs

%ssh <node id> #log into the compute node (node id returned by squeue command)

Log into the compute node directly using ‘ssh’.

Monitoring jobsCompleted jobs

The seff <jobid> command will output a short summary of the CPU and
Memory efficiency of a job.

%seff 8457631
Job ID: 8457631
Cluster: mesabi
User/Group: lamx0031/support
State: COMPLETED (exit code 0)
Nodes: 1
Cores per node: 24
CPU Utilized: 06:33:21
CPU Efficiency: 95.29% of 06:52:48 core-walltime
Job Wall-clock time: 00:17:12
Memory Utilized: 726.06 MB
Memory Efficiency: 1.48% of 48.00 GB

Monitoring jobsCompleted jobs

The sacct -j <jobid> command will output a more detailed information
about a completed job. You can control what it print using the
‘--format’ option.

%sacct -j 8457631 --format=JobID,JobName,MaxRSS,MaxRSSTask,MaxRSSNode,Elapsed

 JobID JobName MaxRSS MaxRSSTask MaxRSSNode Elapsed
------------ ---------- ---------- ---------- ---------- ----------
8457631 Run_MD_st+ 00:17:12
8457631.bat+ batch 743484K 0 cn3007 00:17:12
8457631.ext+ extern 928K 0 cn3007 00:17:12

The (.bat+) is the job submission script where the compute resources are usually
consumed and the (.ext+) normally does not consume large resources. The MaxRSS
returns the largest resident set size which indicates the memory the job needed for any
tasks. The MaxRSSTask gives you where which job step is consumed the largest memory
and MaxRSSNode gives you the compute node that carries out such task.

https://slurm.schedmd.com/sacct.html

Monitoring jobsCanceling jobs

Use scancel with the job ID to cancel a job:

$ scancel <jobid>

You can cancel all your jobs, or all your pending jobs with scancel:

$ scancel -u $USER
$ scancel -t PENDING -u $USER

https://slurm.schedmd.com/scancel.html

Troubleshooting tips

Job submission and scheduling

Typical workflow

A typical batch job workflow:

1. You create a job script
○ Several key resource requests:

i. Node (-N), core(-c) How many nodes and cores does your job need?
ii. --time, How long does your job need to run?
iii. --mem, How much total memory does your job need?
iv. -p <partition>, which partition fits your job best?

2. You submit job script with command: sbatch
3. You check job status with command: squeue
4. When job completes, check output or log file(s)
5. If job failed, modify job script and resubmit (back to step 1)

○ Check job information with command “sacct” or “seff”
6. If job succeeded, check job information with “sacct” or “seff”

Job submission and scheduling

Submitting jobs

sbatch messages: incorrect resource configuration

 lamx0031@ln0006 [~] sbatch myscript
sbatch: error: Setting account: support
sbatch: error: Memory specification can not be satisfied
sbatch: error: Batch job submission failed: Requested node configuration is not available

For example, if you requested more memory than what a compute node actually has.
*Check our Slurm partitions specification webpage for proper configuration settings.

Troubleshooting tips

Do a dry-run using the “--test-only” option with sbatch

%sbatch --test-only myscript.sh
sbatch: Setting account: support
sbatch: Job 1433090 to start at 2021-03-10T18:42:53 using 4 processors on nodes cn0166 in partition small

A good way to validate the slurm script and return an estimate of when a job would be scheduled to run. No
job is actually submitted.

Submitting jobs Troubleshooting tips

Using sacct Troubleshooting tips

#!/bin/bash
#SBATCH --j OOM
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=10M
#SBATCH --time=00:05:00

stress --cpu 1 --io 1 --vm 1 --vm-bytes 128M --timeout 120s

%sacct -j 10662930 --format=JOBID,JOBNAME,averss,maxrss,START,END,NCPUS,NTASK,STATE --unit=M
 JobID JobName AveRSS MaxRSS Start End NCPUS NTasks State
------------ ---------- ---------- ---------- ------------------- ------------------- ---------- -------- ----------
10662930 OOM 2022-01-28T15:07:29 2022-01-28T15:09:34 1 OUT_OF_ME+
10662930.ba+ batch 2.62M 2.62M 2022-01-28T15:07:29 2022-01-28T15:09:34 1 1 OUT_OF_ME+
10662930.ex+ extern 0.89M 0.89M 2022-01-28T15:07:29 2022-01-28T15:09:35 1 1 COMPLETED

After the job exits, run the below sacct command to check the status of the job.

Out of Memory Issues

Using sacct Troubleshooting tips

#!/bin/bash
#SBATCH --j OOM
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=200M
#SBATCH --time=00:01:00

stress --cpu 1 --io 1 --vm 1 --vm-bytes 128M --timeout 200s

After the job exits, run the below sacct command to check the status of the job.

Timeout issues

sacct -j 10663966 --format=JOBID,JOBNAME,averss,maxrss,START,END,NCPUS,NTASK,STATE --unit=M
 JobID JobName AveRSS MaxRSS Start End NCPUS NTasks State
------------ ---------- ---------- ---------- ------------------- ------------------- ---------- -------- ----------
10663966 OOM 2022-01-28T15:33:00 2022-01-28T15:34:32 1 TIMEOUT
10663966.ba+ batch 101.92M 101.92M 2022-01-28T15:33:00 2022-01-28T15:34:33 1 1 CANCELLED
10663966.ex+ extern 0.89M 0.89M 2022-01-28T15:33:00 2022-01-28T15:34:33 1 1 COMPLETED

Using sacct Troubleshooting tips

#!/bin/bash
#SBATCH --j OOM
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=200M
#SBATCH --time=00:010:00

stresso --cpu 1 --io 1 --vm 1 --vm-bytes 128M --timeout 200s #command not found

After the job exits, run the below sacct command to check the status of the job and check its exit
code.

Find exit code

sacct -j 10664308 --format=JOBID,JOBNAME,averss,maxrss,NCPUS,NTASK,STATE,exitcode --unit=M
 JobID JobName AveRSS MaxRSS NCPUS NTasks State ExitCode
------------ ---------- ---------- ---------- ---------- -------- ---------- --------
10664308 OOM 1 FAILED 127:0
10664308.ba+ batch 1.21M 1.21M 1 1 FAILED 127:0
10664308.ex+ extern 0.90M 0.90M 1 1 COMPLETED 0:0

Exit code Troubleshooting tips

Code Meaning Note

0 Success Check output

1 General error Check log files

2 Incorrect use of shell
builtins

Check log files

3-124 Job error check exit code of software

125 Out of memory

126 Command not executed

127 Command not found

128 Invalide argument

129 -192 Terminated via signal Subtract 128 from the number
and match to signal code

Need more help?

Check our SLURM webpage
https://www.msi.umn.edu/slurm

Submit a ticket to the helpdesk
Email: help@msi.umn.edu
https://www.msi.umn.edu/content/helpdesk

SLURM cheat sheet
https://slurm.schedmd.com/pdfs/summary.pdf

Troubleshooting tips

Check our Job FAQ webpage
https://www.msi.umn.edu/support/faq/jobs

https://www.msi.umn.edu/slurm
mailto:help@msi.umn.edu
https://www.msi.umn.edu/content/helpdesk
https://slurm.schedmd.com/pdfs/summary.pdf
https://www.msi.umn.edu/support/faq/jobs

THANK YOU!

Job submission and scheduling

