
Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Intro to Slurm Workload
Manager at MSI

Minnesota Supercomputing Institute
University of Minnesota

2020-10-20

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Preamble: Objectives

- This tutorial is broken up into two sections. You will learn the following:
a. Section 1: “Crash Course” (1 hour)

- Timeline of PBS to Slurm transition at MSI
- Important terminology for Slurm
- Important commands for using Slurm
- MSI’s Partitions
- Running an interactive Slurm job
- Converting a PBS jobscript to Slurm

b. Section 2: Advanced Topics (1 hour)
- Anatomy of a Slurm job
- Writing new Slurm jobscripts
- Viewing accounting info
- Job arrays
- Job dependencies

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Preamble: Formatting

- There will be formatting cues to help you identify important pieces of
information in this tutorial:

- Monospaced text indicates computer code or literal values that must be
entered into a program.

- Bold text indicates technical terminology that is being used in a specific
context. This is because the technical definitions collide with common
language.

- Italicized text indicates a special word that you may hear in a the
computing context, but we are not covering it directly.

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Preamble: Reference This Later!

- This tutorial has reference tables integrated into the slides. Please do not try to
memorize them during the presentation; refer to the slides or to the website
afterward!

- This tutorial has an interactive component that requires command line access
to MSI.

- Be sure you are connected to the UMN OIT VPN
https://it.umn.edu/services-technologies/virtual-private-network-vpn

- Be sure you have a way to use ssh to access MSI:
https://www.msi.umn.edu/content/connecting-hpc-resources#ssh

https://it.umn.edu/services-technologies/virtual-private-network-vpn
https://www.msi.umn.edu/content/connecting-hpc-resources#ssh

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Overview

- MSI is switching from PBS to Slurm for job management

- Starting in 2021, all users must be using Slurm.
- PBS is going away.
- The way you submit jobs will change.

- We are providing this workshop and document to help users make the
transition from PBS to Slurm so that research work is minimally disrupted

- PBS will continue to function on MSI systems until January 2021.
- MSI will be moving nodes from PBS management to Slurm management,

so if you continue to use PBS, you will experience longer wait times and
slower performance...

- For help, email MSI Help: help@msi.umn.edu

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Transition Timeline

- October 2020:
- Partitions (queues) established

- November 1, 2020:
- >30% of nodes switch from PBS to Slurm

- December 1, 2020:
- ~80% of nodes switch from PBS to Slurm

- January 6, 2021:
- PBS goes offline

- See more info here:
https://www.msi.umn.edu/slurm

https://www.msi.umn.edu/slurm

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 1: Resource Managers and
Job Schedulers

- Systems to allocate shared compute resources to users of a large compute
system

- Shared compute resources are often under contention
- There is more compute work to be done than compute resources available

at any given moment
- Workload is managed by a resource manager and a job scheduler
- Resource manager:

- Monitors node availability and load (usage)
- Manages CPU, network, disk, memory, etc. in a cluster

- Job scheduler:
- Sends compute tasks to nodes
- Manages queues and priority

Somewhat like the Maître d'hôtel in a restaurant

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 1: Resource Managers and
Job Schedulers

- Some factors for determining which jobs get run:
- Current system load
- Submitting user’s fair-share usage
- Submitted job’s requested resources

- Several solutions to this problem:
- Portable Batch System
- Slurm Workload Manager
- Sun Grid Engine
- IBM Load Sharing Facility
- And others

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 2: Slurm Overview

- Slurm is both a resource manager and a job scheduler
- Officially supported by SchedMD:

- https://schedmd.com/
- Online documentation:

- https://slurm.schedmd.com/
- Open source:

- https://github.com/SchedMD/
- MSI is running Slurm 20.02.3

- If you are looking at the official documentation, be sure that the versions
match

- Also, if you find documentation from a different computing facility, be sure
you know what version they are running

- Slurm is also highly customisable, so we cannot guarantee that what is
posted on another facility’s documentation will work at MSI

https://schedmd.com/
https://slurm.schedmd.com/
https://github.com/SchedMD/

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 2: Terminology

- Thankfully most of the terminology for Slurm is very similar to the terminology
used by PBS TORQUE/Moab:

- Job: a reservation on the system to run commands
- Node: physical machine that is part of the cluster. The cluster is made up

of many connected nodes.
- Core/CPU: single processing unit for computing. One node contains many

cores or CPUs (we will discuss this later!)
- There are a couple places where the terminology is different, however:

- Partition: where to run jobs. TORQUE PBS calls this a “queue.” Has
resource limits and access controls.

- Quality of Service (QoS): special limits for a given partition or user.
TORQUE PBS implements this with “routing queues” (large, max,
widest, on Mesabi, for example).

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 2: Important Differences

- Besides terminology, there are some functional differences between PBS and
Slurm that you should be aware of:

- Slurm combines the stdout and stderr channels into one file by default
(like -j oe in PBS). PBS’s default behavior is to write them separately as
.o and .e files, respectively.

- We will go over how to deal with this!

- Slurm jobs run in the same directory as the submitted jobscript. PBS
jobs, by comparison, run in the submitter’s home directory.

- Slurm allows you to specify multiple partitions for a job. PBS allows you
to specify only one queue. More on this later!

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 3: Interacting with Slurm

- Slurm uses different commands from TORQUE PBS/Moab to handle jobs and
view information about a specific job or partition

- The basics are shown in the next tables, but refer to the following guides for
more detailed descriptions:

NIH PBS to Slurm guide:
https://hpc.nih.gov/docs/pbs2slurm.html

NREL guide:
https://www.nrel.gov/hpc/assets/pdfs/pbs-to-slurm-translation-sheet.pdf

https://hpc.nih.gov/docs/pbs2slurm.html
https://www.nrel.gov/hpc/assets/pdfs/pbs-to-slurm-translation-sheet.pdf

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 3: Important Commands

- Do NOT memorize this table right now! Use this as a reference for when you
need to interact with Slurm.

Slurm Command PBS/Moab Command Description

sbatch qsub Submit a job to the
scheduler

srun --pty bash qsub -I Submit an interactive
job to the scheduler

scancel qdel Delete a job

scancel mjobctl -c Delete a job

scontrol show job checkjob Show job information

Also note: you will have to provide options and arguments to these commands. They are not shown in this table.

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 3: Important Commands

- Do NOT memorize this table right now! Use this as a reference for when you
need to interact with Slurm.

Slurm Command PBS/Moab
Command

Description

scontrol show partition qstat -Qf View partition
configuration
information

squeue -al qstat -f Show all job
information

squeue --me qstat -u $(id -un) Show only your job
information

sinfo qstat -Q Show partition status
Also note: you will have to provide options and arguments to these commands. They are not shown in this table.

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 4: MSI Partitions: Mesabi
Partition

Name
Node
Sharing?

Max.
nodes
per job

Cores
per
node

Walltime
limit

Total node
memory

Advised
memory
per core

Local
scratch
per node

small Yes 9 24 96:00:00 60.4gb 2639mb 390gb

large No 48 24 24:00:00 60.4gb 2639mb 390gb

widest No 360 128 24:00:00 60.4gb 2639mb 390gb

max Yes 1 24 696:00:00 60.4gb 2639mb 390gb

ram256g Yes 2 24 96:00:00 248.9gb 10814.3mb 390gb

ram1t Yes 2 24 96:00:00 10003.9gb 32649.3mb 228gb

k40 No 40 24 24:00:00 123.2gb 5365.5mb 390gb

interactive Yes 4* 24** 12:00:00 60.4gb* 2639mb* ***

Yellow highlight: nodes with GPUs

Note: jobs in the interactive partition have a limit of four (4) cores total, spread across 1, 2, or
4 nodes. It also targets ram256g and ram1t nodes, so please refer to per-core memory
recommendations for high-memory interactive jobs.

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 4: MSI Partitions: Mangi
Partition

Name
Node
Sharing?

Max.
nodes
per job

Cores
per node

Walltime
limit

Total
node
memory

Advised
memory
per core

Local
scratch
per node

amdsmall Yes 1 128 96:00:00 248.7gb 2027.7mb 429gb

amdlarge No 32 128 24:00:00 248.7gb 2027.7mb 429gb

amd2tb Yes 1 128 96:00:00 2010gb 16341.8mb 429gb

v100 No 6 24 24:00:00 376.4gb 16352.7mb 875gb

Yellow highlight: nodes with GPUs

Note: All Mangi GPU nodes have been placed into the v100 partition. Jobs in this partition will be
allocated as follows:

- 1-2 GPUs: v100 2-way, 4-way, or 8-way nodes
- 3-4 GPUs: v100 4-way or 8-way nodes
- 5-8 GPUs: v100 8-way node

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 4: MSI Partitions

- There are a few changes from the TORQUE PBS queues:
- There is no amd_or_intel partition

- To submit jobs to either Mesabi or Mangi (which is what the PBS
amd_or_intel queue targeted), use the following in your batch
scripts:

#SBATCH -p small,amdsmall

- There are no v100-4 and v100-8 partitions
- These queues have all been merged into the v100 partition.
- Jobs in this partition will be placed as follows:

- 1-2 GPUs: v100 2-way, 4-way, or 8-way nodes
- 3-4 GPUs: v100 4-way or 8-way nodes
- 5-8 GPUs: v100 8-way node

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Next: Hands-on Work

- We will now start the hands-on portion of the tutorial.
- Connect to the login.msi.umn.edu server with your ssh program. Replace

X.500 with your UMN internet ID Be sure you are connected to the UMN OIT
VPN!

ssh X.500@login.msi.umn.edu

- Connect to the mesabi cluster from the login node.

ssh mesabi

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 5: Interactive Slurm Jobs

- Use the srun command to request an interactive job:

srun -N 1 -n 1 -c 1 --mem=2gb -t 20 -p interactive --pty bash

This job makes the following request:
1 node (-N 1)
1 core (-n 1 -c 1)
2gb of RAM (--mem=2gb)
20 minutes of walltime (-t 20)
Use the interactive partition (-p interactive)

- The --pty bash tells the system that you want to run a bash shell
(interactively) inside of your allocation.

- When you see your prompt again, you are running a shell in a new interactive
job allocation

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 5: Interactive Slurm Jobs

- Let’s check what node we are connected to. Run this command:

hostname

- You should see a name like cn0007 get printed to the terminal. This is the
name of the compute node onto which your allocation was assigned.

- If you experience issues related to a particular node, be sure to include
the name of the node in your messages to the MSI Helpdesk.

- This will help us identify potential hardware errors or misconfigurations.

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 5: Interactive Slurm Jobs

- Let’s check the job ID by running this command:

echo ${SLURM_JOBID}

- You should see a number like 9620 get printed to the terminal. This is is the ID
of the allocation for your job.

- If you experience issues related to a job, be sure to include the ID of the
job in your message to the MSI Helpdesk.

- Exit out of the job:

exit

- Interactive jobs in Slurm function identically to interactive jobs in PBS
TORQUE/Moab

- You have full access to the software available in modules
- You can run interactive R, Perl, Python…

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 6: Converting a PBS Script
to Slurm

- Now, we will convert a pre-written PBS jobscript into a Slurm jobscript.
- Copy the example PBS script into your home directory:

cp /home/msistaff/public/Slurm_Workshop/pbs_example_to_convert.sh ~

- Open the script in nano:

nano pbs_example_to_convert.sh

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 6: Converting a PBS Script
to Slurm

- The script looks like the text on the left; edit it to make it look like the text on the
right (use your email address, though!):

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=2gb
#SBATCH -t 20
#SBATCH --mail-type=ALL
#SBATCH --mail-user=YOUR.X.500@umn.edu
#SBATCH -p small
#SBATCH -o %j.out
#SBATCH -e %j.err

hostname

echo ${SLURM_JOBID}

#!/bin/bash
#PBS -l nodes=1:ppn=1,mem=2gb,walltime=00:20:00
#PBS -m abe
#PBS -M YOUR.X.500@umn.edu
#PBS -q mesabi

hostname

echo ${PBS_JOBID}

mailto:YOUR.X.500@umn.edu
mailto:YOUR.X.500@umn.edu

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 6: Converting a PBS Script
to Slurm

- Save the file by pressing [Control] + [X], then pressing [Y], then pressing
[Enter]

- Now, submit the job with sbatch:

sbatch pbs_example_to_convert.sh

- Make a note of the job ID that gets written to the terminal.
- Watch out for the emails!

- They come from msi_slurm@msi.umn.edu; so filter based on that
address.

- Check the output from the job; replace job_id with your actual job ID:

more job_id.out

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 6: Converting a PBS Script
to Slurm

- Conversion between commonly-used PBS and Slurm directives:

PBS Directive Slurm Directive Description

#PBS -l nodes=X:ppn=Y #SBATCH --nodes=X
#SBATCH --ntasks-per-node=Y

Request X nodes and Y
CPUs per node

#PBS -l walltime=HH:MM:SS #SBATCH -t HH:MM:SS Request a total of
HH:MM:SS of walltime

#PBS -l mem=Xgb #SBATCH --mem=Xgb Request a total of X
gigabytes of memory for
the job

#PBS -q QUEUE #SBATCH -p QUEUE Send job to the QUEUE
queue or partition

Note: you will have to fill in appropriate values for these directives. The values that need
to be replaced are bold and underlined

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 6: Converting a PBS Script
to Slurm

- Conversion between commonly-used PBS and Slurm directives:

PBS Directive Slurm Directive Description

#PBS -M USER@umn.edu #SBATCH --mail-user=USER@umn.edu Send job emails to
USER@umn.edu

#PBS -m abe #SBATCH --mail-type=ALL Send job emails for start,
abort, and completion

#PBS -e file.err #SBATCH -e file.err Write the standard error
channel to file.err

#PBS -o file.out #SBATCH -o file.out Write the standard output
channel to file.out

#PBS -N NAME #SBATCH -J NAME Set the job name to NAME

Note: you will have to fill in appropriate values for these directives. The values that need
to be replaced are bold and underlined

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Reminder: Transition Timeline

- October 2020:
- Partitions (queues) established

- November 1, 2020:
- >30% of nodes switch from PBS to Slurm

- December 1, 2020:
- ~80% of nodes switch from PBS to Slurm

- January 6, 2021:
- PBS goes offline

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Section 2: More Advanced Slurm

- By now, you should:
- Know that you will have to use Slurm
- Have a translation table between PBS commands and Slurm commands
- Know how to submit interactive and batch jobs to the Slurm scheduler
- Know how to convert a PBS jobscript to a Slurm jobscript

- Short break (5 min)!

- Next section:
- More detailed Slurm job terminology
- Writing new Slurm jobscripts
- View accounting info
- Intro to job arrays
- Intro to job dependencies

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Gritty Details: Terminology
- Job: Resource request that can be

used to perform compute tasks. CPU
(and optionally GPU), memory, disk
space for a specified time.

- Step: A specific command or compute
task within a job. A job is made up of
one or more steps.

- Task: A compute process that needs
to be run. One or more tasks make
up a step.

- Partition: Queue for jobs. Has
resource limits and access controls.

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 7: General Slurm Jobs

- A job is just a resource
allocation request.

- Made up of one or more
steps.

- A step can contain one or
more tasks.

- Mechanistically, the steps in a
job are subsets of the overall
allocation for the job.

- These can be run
sequentially or in parallel

In a schematic:

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 7: General Slurm Jobs
In a script:

Resource request
parameters for the
whole job

Steps are made
with srun. We
will cover this
later!

Steps can have
their own
allocations within
a job

Steps can be
run in parallel

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 7: General Slurm Jobs

- Note that it is not necessary to use srun to make steps within the job.
- You can just use a normal shell script.
- The division of a job into steps makes it easier to manage concurrent

processes in a job and also view more detailed resource usage
information for your job.

- You can more tightly control how many compute resources any given step
is allowed to use.

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 8: A New Batch Job

- Now we will write a new jobscript for a batch job
- Use nano to start a new script:

nano example_batch.sh

- We are starting a new jobscript here because we will use some of the features
of Slurm job management

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 8: A New Batch Job

- Enter the following text into the file. Be sure to use your actual email address
instead of the placeholder!

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=2gb
#SBATCH -t 20
#SBATCH --mail-type=ALL
#SBATCH --mail-user=YOUR.X.500@umn.edu
#SBATCH -p small
#SBATCH -o %j.out
#SBATCH -e %j.err

srun hostname

srun echo ${SLURM_JOBID}

mailto:YOUR.X.500@umn.edu

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 8: A New Batch Job

- Save the file by pressing [Control] + [X], then pressing [Y], then pressing
[Enter]

- Now, we will send the job to the scheduler with the sbatch command:

sbatch example_batch.sh

- You will see text like “Submitted batch job 9621” get written to the terminal.
- Eventually, you will get some emails from the Slurm scheduler about the start

and finish of your jobs.
- Just like with PBS TORQUE/Moab, set up an email filter to manage these!
- They come from msi_slurm@msi.umn.edu

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 8: A New Batch Job

- Check the contents of your home directory:

cd $HOME
ls -ltrh

- You should see two files that have names like 9621.out and 9621.err (your
filenames will have your job ID, rather than my job ID).

- Dump the contents of the .out file to the terminal:

more 9621.out

- The information looks very similar to what we saw during the interactive work!

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 9: View Accounting Info

- We will use the batch job we submitted in the previous section to view some
basic accounting information about the job

- This is also included in the Slurm email summaries that get sent upon job
completion

- Accounting information includes:
- Job ID
- Partition in which the job was run
- Job name
- Allocated resources
- Execution time
- Nodes that were used
- And more …!

- Use accounting information to tune your resource request for the job you are
running. Request only what you will realistically need; it helps your job run on
the system sooner!

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 9: View Accounting Info

- Recall the ID of the batch job. Use it to check the accounting information:

sacct -j 10384

- What gets printed is something like the following:

 JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
10384 batch.sh small msistaff 1 COMPLETED 0:0
10384.batch batch msistaff 1 COMPLETED 0:0
10384.extern extern msistaff 1 COMPLETED 0:0
10384.0 hostname msistaff 1 COMPLETED 0:0
10384.1 echo msistaff 1 COMPLETED 0:0

- There are a lot of pieces here, so we will break them down a bit in the next
slide!

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 9: View Accounting Info
 JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
10384 batch.sh small msistaff 1 COMPLETED 0:0
10384.batch batch msistaff 1 COMPLETED 0:0
10384.extern extern msistaff 1 COMPLETED 0:0
10384.0 hostname msistaff 1 COMPLETED 0:0
10384.1 echo msistaff 1 COMPLETED 0:0

- Five entries for this one job:
a. 10384: Accounting info for the whole job
b. 10384.batch: Accounting info for the batch script portion of the job.
c. 10384.extern: Accounting info for non-batch script portion of the job,

e.g., if you connected to the compute node and ran commands while the
job was executing

d. 10384.0: Accounting info for the first step of the job, hostname (the first
srun statement)

e. 10384.1: Accounting info for the second step of the job, echo (the
second srun statement)

- We will see in two slides how using steps makes it easy to keep track of
resource usage within a large job!

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 9: View Accounting Info
 JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
10384 batch.sh small msistaff 1 COMPLETED 0:0
10384.batch batch msistaff 1 COMPLETED 0:0
10384.extern extern msistaff 1 COMPLETED 0:0
10384.0 hostname msistaff 1 COMPLETED 0:0
10384.1 echo msistaff 1 COMPLETED 0:0

- You can view many more pieces of accounting information, such as the CPU
time, memory used, and total execution time. See the list of fields for the
--format= option to sacct:
https://slurm.schedmd.com/sacct.html

- You also get this information (and more!) in the email report when your job
finishes.

https://slurm.schedmd.com/sacct.html

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 9: View Accounting Info

- Sample email report of job accounting:

Memory
usage, by
step. Mind
the units!

Execution
time, by
step.

Working directory.
You will find the
output and error
files here.

Volume of data
written to and read
from disk.

Allocated
nodes.

Breaking a job up into steps allows detailed resource tracking! You can tell which steps are the
“heavy ones” and adjust them if necessary. You can also estimate the required resources for
future job submissions.

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 10: Job Arrays

- Slurm supports job arrays in a similar fashion as TORQUE PBS/Moab
- These are useful if you have a workflow that must be run on a collection of

input data files
- For example, an RNA sequencing data workflow that must be run on a

collection of single-sample files
- Use the --array= option to sbatch to enable array processing

- Array indices are inclusive; for example, --array=0-10 submits 11 jobs.
- To reference the array index in the job script, use the

${SLURM_ARRAY_TASK_ID} environmental variable
- The PBS equivalent of this is ${PBS_ARRAYID}
- Also note here that the “task” that Slurm is referring to in its variable name

is not the same as a task in the resource request context

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 10: Job Arrays

- We will run an example job array with a pre-written Slurm jobscript now.
- Copy the example script into your home directory:

cp /home/msistaff/public/Slurm_Workshop/slurm_job_arrays_example.sh ~

- Edit the script in nano to replace the dummy email address with your own (line 9):

nano slurm_job_arrays_example.sh

- Send the job array to the scheduler. There are four (4) input files, so use the
--array=0-3 option to send a job array with four jobs:

sbatch --array=0-3 slurm_job_arrays_example.sh

- Watch out for the emails, then check the outputs!

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 10: Job Arrays

- Let’s take a look at the input data:

ls -1 /home/msistaff/public/Slurm_Workshop/array_example_data

- The resulting file listing looks like this:

01.dat
02.dat
03.dat
04.dat

- Notice how the names have a common structure. This is important, and we will
cover this in the next slide!

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 10: Job Arrays

- Array indices are just integers. The script is reproduced below:

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=100mb
#SBATCH -t 5
#SBATCH -p small
#SBATCH --mail-type=ALL
#SBATCH --mail-user=konox006@umn.edu
#SBATCH -o %A_%a.out
#SBATCH -e %A_%a.err

DATA_DIR="/home/msistaff/public/Slurm_Workshop/array_example_data"
DATA_FILES=($(find "${DATA_DIR}" -mindepth 1 -maxdepth 1 -type f | sort -V))
CURR_DATA_FILE=${DATA_FILES[${SLURM_ARRAY_TASK_ID}]}
srun echo "This is array index ${SLURM_ARRAY_TASK_ID}. I am processing ${CURR_DATA_FILE}."

Orange boxes: these are the array pieces!

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 11: Dependencies

- Slurm supports job dependencies,
too. Useful for pipelines:

- Job 1: quality control of data.
- IF job 1 succeeds:

- Job 2, job 3, and job 4 will
perform separate analyses

- IF jobs 2, 3, and 4 succeed:
- Job 5 will generate a report

of the analyses
- If a job fails, then the jobs that come

later in the pipeline (depend on it),
will be held

- You can use scancel to delete
jobs that are held due to failed
dependencies

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 11: Dependencies

- Use the --dependency= option to
sbatch to supply a dependency, in
the form of a job ID.

- Also use the --parsable option
to make the retrieval of the job
ID easier!

- The --parsable option makes
sbatch write only the job ID to
the terminal (rather than the full
sentence)

- What it would look like in a script:

job1=$(sbatch --parsable job1.sh)
job2=$(sbatch --parsable --dependency=afterok:${job1} job2.sh)
job3=$(sbatch --parsable --dependency=afterok:${job1} job3.sh)
job4=$(sbatch --parsable --dependency=afterok:${job1} job4.sh)
job5=$(sbatch --parsable --dependency=afterok:${job2}:${job3}:${job4} job5.sh)

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Part 11: Dependencies

- There are many types of dependencies that are available
- “afterok” is likely to be the one you will use most in an analytical pipeline

- See the “dependency” section in the sbatch manual to see the full list of
dependency types that you can specify:
https://slurm.schedmd.com/sbatch.html

- Combine them with arrays for extra fun and sophisticated pipelines!

https://slurm.schedmd.com/sbatch.html

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Further Reading: Slurm @ MSI

- Slurm official documentation:
https://slurm.schedmd.com/documentation.html

- Slurm @ MSI overview:
https://www.msi.umn.edu/slurm

- MSI guide on batch job submission and scheduling:
https://www.msi.umn.edu/content/job-submission-and-scheduling-slurm

- MSI guide on interactive job submission:
https://www.msi.umn.edu/content/interactive-queue-use-qsub

- MSI-RIS Slurm quickstart (Requires UMN ID):
https://github.umn.edu/MSI-RIS/SLURM_Quickstart/blob/master/SLURM_Quic
kstart.md

https://slurm.schedmd.com/documentation.html
https://www.msi.umn.edu/slurm
https://www.msi.umn.edu/content/job-submission-and-scheduling-slurm
https://www.msi.umn.edu/content/interactive-queue-use-qsub
https://github.umn.edu/MSI-RIS/SLURM_Quickstart/blob/master/SLURM_Quickstart.md
https://github.umn.edu/MSI-RIS/SLURM_Quickstart/blob/master/SLURM_Quickstart.md

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Further Reading: MSI Generally

- MSI queues:
https://www.msi.umn.edu/queues

- MSI tutorials:
https://www.msi.umn.edu/tutorials

- MSI interactive HPC resources:
https://www.msi.umn.edu/content/connecting-interactive-hpc-resources

- MSI software catalogue:
https://www.msi.umn.edu/software

https://www.msi.umn.edu/queues
https://www.msi.umn.edu/tutorials
https://www.msi.umn.edu/content/connecting-interactive-hpc-resources
https://www.msi.umn.edu/software

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Further Reading: Nice Things

- NIH has a PBS to Slurm conversion tool:
https://hpc.nih.gov/docs/pbs2slurm_tool.html

If you use this, READ YOUR SCRIPT CAREFULLY! Make sure that the logic of
the script is still intact before submitting jobs.

https://hpc.nih.gov/docs/pbs2slurm_tool.html

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Reminder: Transition Timeline

- October 2020:
- Partitions (queues) established

- November 1, 2020:
- >30% of nodes switch from PBS to Slurm

- December 1, 2020:
- ~80% of nodes switch from PBS to Slurm

- January 6, 2021:
- PBS goes offline

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Thank You!

- If you have feedback on this tutorial, please send it Tom Kono
(konox006@umn.edu). I am happy to make the tutorials more useful for you!

- If you have additional questions about the Slurm transition or have difficulties
with the Slurm scheduler, please contact the MSI Help Desk
(help@msi.umn.edu)

mailto:konox006@umn.edu

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

- Example: three users want to run jobs on the cluster

- Analogous to three groups want to eat dinner at a restaurant
- 3 people, 5 people, 16 people with a prior reservation
- But, there is only one table with four seats available right now
- Who should get seated?

- Some things to consider:
- Are there tables that are about to be free?
- Who was waiting the longest?

- Not appropriate in a restaurant, but relevant for job scheduling:
- Who is the hungriest?

*: This is not how the MSI job scheduler actually works; this example is to illustrate why
scheduling is important when there is contention for compute/memory/throughput

Supplement: Resource
Managers and Job Schedulers

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Gritty Details: Hardware
Terminology

- Cluster: Set of connected compute
resources (hardware!). Made up of
multiple nodes.

- Node: Set of compute resources that
are physically connected, i.e., in the
same “box” or “server” or “machine.”
Multiple nodes are connected via
network to make a cluster.

- Core: A single unit of computing
hardware. Largely synonymous with
“CPU.” A single node has multiple
cores.

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Supplementary Background

- MSI’s previous system used the TORQUE fork of the PBS resource manager
and the Moab job scheduler

- This is where some of the issues with jobs came from:
- Jobs are sent to TORQUE with qsub
- Jobs are then assigned an ID by TORQUE and sent to the Moab

scheduling daemon
- Moab monitors job status and communicates changes to TORQUE

- If one of TORQUE or Moab were overloaded or down, then job control or
job monitoring would fail.

- This would lead to qsub/qstat/qdel hanging or not being able to
report information on a job

- May also be related to some “zombie” jobs that continually run and
drain service units

Minnesota Supercomputing Institute

 © 2020 Regents of the University of Minnesota. All rights reserved.

Supplementary Background

- MSI’s new system uses Slurm for both resource management and job
scheduling

- “Slurmctld” manages available resources and schedules new jobs
- Typically running multiple instances within a facility: one per “cluster”

(Mesabi or Mangi)
- “Slurmdb” manages accounting information for users/groups/jobs

- Typically running a single slurmdb instance for all of a site
- Should be more resilient to downtime or large volumes of requests than

PBS TORQUE/Moab because it is more distributed

