Donald Truhlar
Chemistry

Bender, Jason D., Sriram Doraiswamy, Donald G. Truhlar, and Graham V. Candler. 2014. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N₄. *Journal of Chemical Physics* 140 (5) (JAN 01).

Bender, Jason D., Ioannis Nompelis, Paolo Valentini, Thomas E. Schwartzentruber, Graham V. Candler, Sriram Doraiswamy, Yuliya Paukku, Ke R. Yang, Zoltan Varga, and Donald G. Truhlar. 2014. Quasiclassical trajectory analysis of the N₂ + N₂ reaction using a new ab initio potential energy surface.

Hoyer, Chad E., Giovanni Li Manni, Donald G. Truhlar, and Laura Gagliardi. 2014. Controversial electronic structures and energies of Fe₂⁺, Fe⁺, and Fe⁻ resolved by RASPT2 calculations. *Journal of Chemical Physics* 141 (20) (NOV 28).

Donald Truhlar
Chemistry

framework with enhanced back bonding for separation of N\textsubscript{2} and CH\textsubscript{4}. *Journal of the American Chemical Society* 136 (2) (JAN 15): 698-704.

Mielke, Steven L., Bruce C. Garrett, Donald G. Fleming, and Donald G. Truhlar. 2014. Zero-point energy, tunnelling, and vibrational adiabaticity in the mu + H\textsubscript{2} reaction. *Molecular Physics* (OCT 01).

Wang, Bo, Shaohong L. Li, and Donald G. Truhlar. 2014. Modeling the partial atomic charges in inorganometallic molecules and solids and charge redistribution in lithium-ion cathodes. *Journal of Chemical Theory and Computation* 10 (12) (DEC 09): 5640-

Donald Truhlar
Chemistry

Leverentz, Hannah R., Helena W. Qi, and Donald G. Truhlar. 2013. Assessing the accuracy of density functional and semiempirical wave function methods for water nanoparticles: Comparing binding and relative energies of (H_2O)_{16} and (H_2O)_{17} to CCSD(T) results. *Journal of Chemical Theory and Computation* 9 (2) (FEB 12): 995-1006.

Paukku, Yuliya, Ke R. Yang, Zoltan Varga, and Donald G. Truhlar. 2013. Global ab initio ground-state potential energy surface of N₄. *Journal of Chemical Physics* 139

Yang, Ke R., Xuefei Xu, and Donald G. Truhlar. 2013. Direct diabatization of electronic states by the fourfold-way: Including dynamical correlation by multi-configuration quasidegenerate perturbation theory with complete active space self-consistent-field

Han, Jaebeom, Donald G. Truhlar, and Jiali Gao. 2012. Optimization of the explicit polarization (X-pol) potential using a hybrid density functional. *Theoretical

Mielke, Steven L., and Donald G. Truhlar. 2012. Accelerating the convergence and reducing the variance of path integral calculations of quantum mechanical free
Donald Truhlar
Chemistry

Papajak, Ewa, and Donald G. Truhlar. 2012. What are the most efficient basis set strategies for correlated wave function calculations of reaction energies and barrier heights. *The Journal of Chemical Physics* 137 (6) (AUG 14).

Seal, Prasenjit, Ewa Papajak, Tao Yu, and Donald G. Truhlar. 2012. Statistical

Li, Ruifang, Yan Zhao, and Donald G. Truhlar. 2011. Adequate representation of charge polarization effects leads to a successful treatment of the CF4 + SiCl4 -> CCl4 + SiF4 reaction by density functional theory. *Chemical Communications* 47 (8): 2357-9.

Meana-Paneda, Ruben, Donald G. Truhlar, and Antonio Fernandez-Ramos. 2011. High-
level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen. *Journal of Chemical Physics* 134 (9) (MAR 7): 094302.

Xu, Xuefei, and Donald G. Truhlar. 2011. Accuracy of effective core potentials and basis sets for density functional calculations, including relativistic effects, as illustrated by calculations on arsenic compounds. *Journal of Chemical Theory and Computation* 7 (9) (SEP): 2766-79.

Yang, Ke, Roberto Peverati, Donald G. Truhlar, and Rosendo Valero. 2011. Density
Donald Truhlar
Chemistry

Donald Truhlar
Chemistry

Tishchenko, Oksana, Sonia Ilieva, and Donald G. Truhlar. 2010. Communication: Energetics of reaction pathways for reactions of ethenol with the hydroxyl radical: The importance of internal hydrogen bonding at the transition state. *Journal of Chemical Physics* 133 (2) (JUL 14): 021102.

