Mining Qualified Association Rules in Distributed Databases

Svetlozar Nestorov
The University of Chicago
Example Scenario

• What products are frequently bought together…

Central Site

Central DB
Example Scenario

- What products are frequently bought together… in the same season, by customers of the same age group?

Central Site

Central DB
Example Scenario

- What products are frequently bought together... in the same season, by customers of the same age group?
Outline

• Association Rules
• Star Schema and Data Warehousing
• Qualified Association Rules (QAR)
• Tightly-Coupled Framework
• QAR for Distributed Databases … and the GRID
• Future Work
Association Rules

• Market Basket Data
 – Sets (transactions, baskets) of items.

• Standard Definition
 – Example: \{gloves, scarf\} → \{hat\}

• Support and Confidence

• Frequent (high support) itemsets
 – What items appear together (in the same basket) frequently?
Why Association Rules Work

• Appropriateness of purpose
 – Understandable results

• Wide applicability in many domains
 – Genomics, economics, astronomy, etc.

• Optimization techniques
 – Apriori (levelwise pruning)

• Where do market basket data come from?
 – Databases, often with a star schema
Data Warehousing

• Standard practice
• Relatively complex and expensive
 – Powerful hardware and software, often underutilized
• Dimensional modeling
 – Results in star schema databases
• Analyzed with OLAP
Association Rules over Star Schema

Sales fact table

Calendar
- CalendarKey (PK)
- FullDate
- Month
- Season
- ...

Location
- LocationKey (PK)
- StoreID
- City
- Region
- ...

Product
- ProductKey (PK)
- SKU
- Brand
- ...

Customer
- CustomerKey (PK)
- CustomerID
- Gender
- AgeGroup
- ...

TransactionID
Qualified Association Rules (QAR)

• Association rules with qualified dimensions
 – Correlations among values of multiple attributes in multiple tables.

• Example
 \{gloves, scarf\} → \{hat\} qualified with
 Season = winter, AgeGroup = 35_45

• Support and Confidence
Mining Qualified Association Rules

- Specify dimensional attributes to be qualified.
- Specify support and confidence thresholds.
- Example:

 What products are frequently bought together in the same season, by customers of the same age group? (with supp = 0.5%, conf = 50%)
QAR Advantages

- Add details (context) to association rules.
- Enable ad-hoc mining from different perspectives.
- May help overcome common problems:
 - too many rules,
 - too few rules.
Optimization Technique

• More complex than Apriori (standard AR).
 – Partially ordered lattice of subqueries.

• Key principle:
 – If itemset X is frequent in transactions qualified with Z then Itemset Y is frequent in transactions qualified with W, for all subsets Y of X and subsets W of Z.
Example

• \{\text{hat}, \text{scarf}\} \text{ is frequent for} \{\text{Season} = \text{winter}, \text{AgeGroup} = 35_45\}, \text{ then:}
 – \{\text{hat, scarf}\} \text{ is frequent}
 – \{\text{hat, scarf}\} \text{ is frequent for} \{\text{Season} = \text{winter}\}
 – \{\text{hat}\} \text{ is frequent for} \{\text{Season} = \text{winter}, \text{AgeGroup} = 35_45\}
 – \{\text{scarf}\} \text{ is frequent for} \{\text{AgeGroup} = 35_45\}
 ...

Levelwise algorithm

- A plan is a sequence of subqueries.
- Doubly exponential search space
- Levelwise greedy heuristic:
 - Level 1: Find a plan to compute all frequent qualified items
 - Level 2: Find a plan to compute all frequent qualified pairs
 ...
 - Level N: Find a plan to compute all frequent qualified N-itemsets
Implementation Framework

• Tightly-coupled with database systems
• Advantages:
 – Powerful hardware and software
 – Privacy
 – Security
 – Fast deployment
• Disadvantages
 – Performance?
Tightly-Coupled Architecture

- **Browser-based interface.**
 - Users choose attributes to be mined and thresholds.

- **Thin client.**
 - Generates dynamically a sequence of SQL queries.

GUI
- Parameters: attributes & thresholds.
- Final results
- Mining refinement hints

External Optimizer
- ODBC
- SQL queries
- Final results
- Intermediate result sizes

RDBMS
Example Plan

```
select S.ProductKey, Season
from Sales S, Calendar C
where C.CalendarKey = S.CalendarKey
group by S.ProductKey, Season
having count(TransactionID) >= :minsup
```
Example Plan

AUX_{ProductKey1,ProductKey2, Season, AgeGroup}

AUX_{ProductKey, Season, AgeGroup}

AUX_{ProductKey, Season}

Sales

Calendar

Customers
Distributed QAR

- Key observation: a globally frequent qualified itemset must be locally frequent at some site.

- Naïve Approach
 - Find frequent qualified itemsets at each site; then synchronize
 - Too many candidates
 - Too many messages

- Improvements:
 - Reduce the number of messages
 - Reduce candidates
Levelwise Synchronization

Synchronize at last level

...

Synchronize at level 2

Synchronize at level 1

North DB

West DB

South DB

East DB
Future Work

• Different schemas, integration
• Different site capabilities
• Other implementations (not in SQL)
• Scientific applications